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Atmospheric re-entry context

Flow around spacecraft
High speed flow, High Mach
number : hypersonic conditions
Sphere-cone configuration
Quantities of interest : heat
flux on the boundary and
aerodynamic coefficients

Looking for steady state solution :
time scale of the relaxation � time scale of the trajectory

1CEA/CESTA - Le Barp , 2IMB (UMR 5251)„ Université de Bordeaux , | 15 Octobre 2014 | PAGE 1/20



Example of heat flux

Heat flux computed on a classical sphere-cone geometry
radius of the sphere 0.1m, at 90 km altitude, Mach 20.

Temperature Heat Flux
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Atmosphere encountered during re-entry

Knudsen number Kn = λ
L ( mean free path

characteristic length)
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Rarefied regime

Between 120 and 60 km : rarefied atmosphere
High values of the Knudsen number (between 0.1 and 10) ->
Navier-Stokes is no more valid
Use of the Kinetic theory of gases, with Boltzmann equation

For theses altitudes (120 to 60 km) : use of the model by Bhatnagar Gross
Krook 1 (BGK).

Relaxation toward the Maxwellian equilibrium.
A kinetic code at CEA-CESTA solve BGK model in 2D planar, 2D
axisymetric and 3D.
Computation on TERA100 (supercomputer of the CEA-DAM).

1. P.L. Bathnagar, E.P. Gross, M. Krook, A model for collision processes in gases.
Physical Review, Vol 94, Né 3 (511-525), 1954
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Kinetic theory of gases

In kinetic theory we describe the probability density function

f ≡ f (t, x, v)

with time t, space x ∈ R3 and speed v ∈ R3.
The density function is solution of the Boltzmann equation

∂f

∂t
+ v · ∇xf = Q(f , f )

Left hand side of the equation : transport of the particles of the gas
Q(f , f ) : collisions between particles

Boundary conditions :
upstream flow
on the wall of the spacecraft : diffusive condition (at wall
temperature), specular or mixed (Maxwell condition with
accommodation coefficient).
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The BGK model

In the context of atmospheric re-entry, between 120 and 60 km, flows are
at transitional state.

Use of the Bathnagar, Gross, and Krook (BGK) model : a relaxation of f
toward Maxwellian equilibrium.

∂f

∂t
+ v · ∇xf =

1
τ

(M(f )− f )

with

The Gaussian function (Maxwellian)M(f ) = ρ
(2πRT )3/2

e
−|v−u|2
2RT

τ = τ(t, x) relaxation rate

1CEA/CESTA - Le Barp , 2IMB (UMR 5251)„ Université de Bordeaux , | 15 Octobre 2014 | PAGE 6/20



Physical parameter of the BGK model

The relaxation rate of the BGK model is determined from the
characteristics of the gas :

τ =
µ

ρR T
=

1
ρR T

µref

(
T

Tref

)ω
For air flow 2 : ω = 0.77, Tref = 273K , µref = 1.719 10−5 N.s.m−2

Only one scale in BGK model (relaxation rate), not able to describe flows
like air with Prandtl number different of 1.

2. G.A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxford
Science Publications, 1994
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Properties of BGK

Conservation of mass, momentum and kinetic energy, entropy decrease
(H theorem).
Integrating of the density function along v variable gives relation
between f and macroscopic quantities : ρ

ρu
E

 =

∫
v

 f (t, x, v)
v f (t, x, v)

1
2 |v|

2 f (t, x, v)

 dv

Asymptotic limit of BGK model when Kn→ 0 (around 60 km) :

(ρ, ρu, E ) solutions of Navier-Stokes equations.

Possible comparison between solutions of BGK model and
Navier-Stokes equations.
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BGK vs Navier-Stokes (Pr = 1)

Academic test case (flow around sphere of 0.1 m)
Mach number 5, 60 km of altitude
above : BGK solution
under : Navier-Stokes solution (Prandtl = 1)

Pressure Temperature Mach
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BGK vs Navier-Stokes (Pr = 1)

Good agreement between macroscopic quantities (1D section) and wall
heat flux
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Drawback of the BGK model

BGK model is dedicated to monoatomic gases. As air is a polyatomic
gas, an extension of BGK model for polyatomic was done 3.

f is described with additional variable I (internal energy), and degree
of freedom δ (δ = 2 for diatomic).
Reduced distribution technique : description of f̃ =

∫
I
f (t, x, v, I ) dI

and g̃ =
∫
I
I 2/δf (t, x, v, I ) dI

f̃ and g̃ are solutions of BGK equations

Prandtl number problematic : with BGK model, Prandtl number is 1.
But for air, Prandtl is equal to 0.71.
The ES-BGK model 4 is proposed and was implemented in the
CEA-CESTA kinetic code.

3. B. Dubroca, L. Mieussens, A conservative and entropic discrete-velocity model for
rarefied polyatomic gases, ESAIM-Proceedings Vol. 10 - CEMRACS 1999, 127-139 (2001).

4. P. Andries, P. Le Tallec, J.P. Perlat, and B. Perthame. The Gaussian BGK model
of Boltzmann equation with small Prandtl numbers. European Journal of Mechanics : B
Fluids, 813-830, 2000.
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ES-BGK model for re-entry

idea : replace the MaxwellianM by a anisotropic Gaussian G

BGK model

∂f

∂t
+ v · ∇xf =

1
τ

(M(ρ,u,T )− f )

withM(ρ,u,T ) = ρ
(2πRT )3/2

e
−|v−u|2
2RT

ES-BGK Model

∂f

∂t
+ v · ∇xf =

1
τ

(G(ρ,u, T )− f )

with G(ρ,u, T ) =
ρ√

det(2πT )
e
−(v−u)T −1(v−u)

2 .

Tensor of temperature T = T (ν, θ) ; one can obtain the Prandtl number by
Chapman-Enskog expansion : τ = µ

Pr ρR T with Pr = 1
1−(1−θ)ν .

With well chosen parameters, one can retrieve Prandtl number for
monoatomic gas, i.e. 2

3(ν = −0.5, θ = 0) and polyatomic gas
5
7(ν = −0.5, θ = 1/5).
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ES-BGK vs Navier-Stokes (Pr = 2/3)

Good agreement on macroscopic quantities (1D section) and on heat flux
for monoatomic gas with ES-BGK model (Prandtl=2/3)
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ES-BGK model for re-entry

Validation on flow around flat plate 5 (experiment and numerical
simulation) 6

5. Experimental and Numerical Study of Hypersonic Rarefied Gas Flow over Flat
Plates, Tsuboi,Matsumoto, AIAA JOURNAL Vol. 43, No. 6, June 2005

6. intern ship of M. Capelli (student from Enseirb-Matmeca)
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Description of chemical reactions

Work done by L. Desvillettes, F. Charles, S. Brull and L. Mieussens

Modelling of chemical reactions :
chemical species : N2, 02, N, O, NO ;
N2 and 02 major species, computed by BGK equation with source
terms due to chemical reactions ;
N, O et NO, minor species, considered as macroscopic quantities ;
Simple and easy to implement model.

On this subject :
post-doctoral contract at CEA-CESTA (2015) : we are looking for
candidates, don’t hesitate to apply !
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The BGK discrete model : deterministic method

Use of a deterministic method instead of a stochastic one (DSMC for
example).
Determination of f in each point in space x and speed v ∈ R3 (unbounded
domain !).
BGK discrete velocity model :

∂fk
∂t

+ vk · ∇xfk =
1
τ

(EV(vk)− fk) , pour tout vk ∈ V

with EV an approximation 7 of the MaxwellianM(f ).
Using a Finite Volume method for the space discretization, one can obtain,
for δ f n = f n+1 − f n

(
I

∆t
+ Qn + Rn)δ f n = Sn

7. L. Mieussens, Convergence of a discrete-velocity model for the Boltzmann-BGK
equation, Computers Math. Applic., 41(1-2), 83-96 (2001)
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Improvement : Locally refined discrete velocity grids

Locally refined velocity grid 8 in order to decrease computation time.
Methodology :

Definition of a support function φ(v) = c
√

R T (x) where x is such
than u(x) = v, with u and T obtained by a pre-computation (with
Navier-Stokes model) or estimation (with Rankine-Hugoniot relation).
Use it for the refinement of the velocity grid

Gain in computation time and
memory between 7 (in 2D) and
30 (in 3D),
same results in wall heat flux
computation.

8. C. Baranger, J. Claudel, N. Hérouard, L. Mieussens, Locally refined discrete velocity
grids for stationary rarefied flow simulations , J. Comput. Phys., 257(15), 572-593 (2014)
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Examples of refined velocity grids

Refined velocity grids in 2D axi Refined velocity grid in 3D
(66495 nodes vs 6900 nodes) (65536 nodes vs 2 956 nodes)
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Conclusions

Re-entry in rarefied regime was described by the BGK model, but
improved with the ES-BGK model ;
Since 2010, many achievements were obtained regarding physical
model and numerical realisations.
Numerical resolution of BGK and ES-BGK model : deterministic
scheme was used in the CEA-CESTA kinetic code ;
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Future work

Ph.D.Thesis of Nicolas Hérouard on asymptotic preserving schemes
(2011-2014)

Discontinuous Galerkin method in 1D configuration for linearised BGK
model ;
Boundary conditions and order of the scheme ;

New model with chemical reactions
A modified Fokker Planck equation for rarefied gas dynamics (J.
Mathiaud)
Collaboration will come with a laboratory of Orléans ICARE(with a
wind tunnel ’MarHy’ dedicated to hypersonic rarefied regime) : high
Mach experiment in rarefied regime (Mach 5 with air, Mach 20 with
nitrogen).
New post-doctoral position will be available in 2015 (founded by
LabEx CPU Bordeaux) on study of the overlap zone in altitude
between kinetic model and Navier-Stokes description : we are looking
for candidates, don’t hesitate to apply !
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