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Context and objectives

Objectives
Capture the correct thermal fluxes in
order to design re-entry vehicles,

Use a kinetic model able to recover
Navier-Stokes equations in its
hydrodynamic limit to ensure a continuity
in models.

One key point is to recover the correct
Prandtl number:

Pr =
γR
γ − 1

µ

κ

(equal to
2
3

for monoatomic gases) .
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Zoology of models (1): Boltzmann equation

∂t f + v · ∇x f = Q(f , f ), (1)

with

Q(f , f )(v) =

∫
v∗∈R3

∫
σ∈S2

(
f (v ′∗) f (v ′)− f (v∗) f (v)

)
r2 |v − v∗|dσ dv∗,

and
v ′ =

v + v∗
2

+
|v − v∗|

2
σ,

v ′∗ =
v + v∗

2
− |v − v∗|

2
σ.

Advantages and drawbacks
+ Capture the correct physics: in the Chapman expansion one recovers the

Prandtl number of Navier-Stokes equation which is equal to
2
3

- High numerical cost in transitional area between 100km and 60km (6D
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Zoology of models (2): BGK equation and
Fokker Planck equation

BGK equation

∂t f + v · ∇x f =
1
τ

(M(f )− f ) , (2)

M(f ) =
ρ

(2πRT )3/2
exp

(
|v − u|2

2RT

)
is the Maxwellian of equilibrium satisfying:

< f > =

∫
fdv = ρ,< fv >=

∫
fvdv = ρu, < f

1
2
(v − u)2 >=

∫
f

1
2
(v − u)2dv =

3
2
ρT

τ : characteristic time of collisions.

Fokker Planck equation

∂t f + v · ∇x f =
1
τ
∇v ·

(
(v − u)f + T∇v f

)
, (3)
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Zoology of models (2): BGK equation and
Fokker Planck equation

Advantages and drawbacks
- Physics only approximated: thermal flux underestimated. The Prandtl

number is equal to 1 for BGK model and
3
2

for FP model.

+ Numerical cost less important in transitional area between 100km and
60km.

How to recover the correct Prandtl number?
For BGK models it has been done using the ESBGK model:

∂t f + v · ∇x f =
1
τ

(G(f )− f ) , (4)

with G(f ) anisotropic Gaussian defined as

G(f ) =
ρ√

det(2πΠ)
exp

(
− (v − u)Π−1(v − u)

2

)
.

Π being a tensor linked to the different temperatures of thermal agitation.
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Equation of the ESFP model (1)

The model is the following:

∂t f + v · ∇x f = D(f ), (5)

where the collision operator is defined by

D(f ) =
1
τ
∇v ·

(
(v − u)f + Π∇v f

)
, (6)

where τ is a relaxation time, and Π is a convex combination between the
temperature tensor Θ and its equilibrium value RTI, that is to say:

Π = (1− ν)RTI + νΘ, (7)

with ν parameter to be set and

Θ :=
1
ρ
〈(v − u)⊗ (v − u)f 〉 . (8)
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Other formulations for ESFP

The operator D has two other equivalent formulations:

D(f ) =
1
τ
∇v ·

(
ΠG(f )∇v

f
G(f )

)
, (9)

and

D(f ) =
1
τ
∇v ·

(
Πf∇v log

(
f

G(f )

))
, (10)

where G(f ) is the anisotropic Gaussian defined by

G(f ) =
ρ√

det(2πΠ)
exp

(
− (v − u)Π−1(v − u)

2

)
, (11)

which has the same 5 first moments as f〈
(1, v , 1

2 |v |
2)G(f )

〉
= (ρ, ρu,E),

and has the temperature tensor 〈(v − u)⊗ (v − u)G(f )〉 = Π.
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Validity of the model according to the ν param-
eter

Condition of strict positiveness of Π

The tensor Π is symmetric positive definite for every tensor Θ if, and only if,

− RT
λmax − RT

< ν <
RT

RT − λmin
, (12)

where λmax and λmin are the (positive) maximum and minimum eigenvalues of
Θ.
Moreover Π is unconditionally definite positive with respect to the eigenvalues
of Θ as long as :

−1
2
< ν < 1. (13)
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Kinetic properties of the model:

Conservation
We suppose that the condition of strict positiveness (equations 12) is fulfilled
by ν. The operator D conserves the mass, momentum, and energy:〈

(1, v , 1
2 |v |

2)D(f )
〉

= 0.

Entropy decay

〈D(f ) log f 〉 ≤ 0.

Equilibrium

D(f ) = 0⇔ f = G(f )⇔ f = M(f ).
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Chapman Enskog expansion

Non dimensional ESFP equation
Assume we have some reference values of length x , pressure p, and
temperature T .
We can derive reference values for all the other quantities: mass density
ρ = p/RT , velocity v =

√
RT , time t∗ = x/v , distribution function

f = ρ/(RT )3/2. We also assume we have a reference value for the relaxation
time τ .

∂t f + v · ∇x f =
1
ε

D(f ), (14)

where ε = vτ
x is the Knudsen number.
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Main result of the Chapman-Enskog analysis
(1)

The solution of the ESFP model satisfies, up to O(ε2) the Navier-Stokes
equations (ε being the Knudsen number defined below):

∂tρ+∇ · ρu = 0,
∂tρu +∇ · (ρu ⊗ u) +∇p = −∇ · σ,
∂tE +∇ · (E + p)u = −∇ · q −∇ · (σu),

(15)

where the shear stress tensor and the heat flux are given by

σ = −µ
(
∇u + (∇u)T − 2

3
∇ · u

)
, and q = −κ∇ · T , (16)

The viscosity and heat transfer coefficients are following:

µ =
τp

2(1− ν)
, and κ =

5
6
τpR. (17)

The corresponding Prandtl number is Pr =
3

2(1− ν)
.
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Complete ESFP model

Pros and cons

- We can only recover a Prandtl of 1 because ν is bounded below by −1
2

to
ensure positiveness of the Θ tensor.

+ In real cases near equilibrium Θ is nearly equal to TId so that we can use

ν = −5
4

and recover the correct Prandtl number.

Complete ESFP model

∂t f + v · ∇x f = D(f ),

D(f ) =
1
τ
∇v ·

(
(v − u)f + Π∇v f

)
,

Π = (1− νeff )RTI + νeff Θ,

νeff = max
(
−5

4
,− RT

λmax − RT
)

)
.
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Numerical method

Solving the collision operator
We use standard DSMC methods to proceed. Re-normalization is used to provide
noiseless moments of the p.d.f. . One million particles are used.

Numerical test cases and solutions
We present only 0-D test cases,

Validation is made through two test cases, one with inactive correction on ν and
one with active correction,

One should recover the following ODEs for the Θ tensor and the third moment q.

d
dt

Θ =
1
τ

2(1 − ν) (RT − Θ) ,

Θ(t) = exp
(
−2(1 − ν)t

τ

)
Θ(0) +

(
1 − exp

(
−2(1 − ν)t

τ

))
RTI,

(for ν constant)
d
dt

q = −3
τ

q, so that q(t) = q(0) exp
(
−3t
τ

)
.
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Numerical results for an homogeneous case:
∂t f = D(f ) with inactive correction
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On the left: behaviour of the diagonal components T11,T22,T33 of tensor
Θ and of its trace T .
On the right: histogram of the first component of velocity at time t = 1.
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Numerical results for an homogeneous case:
∂t f = D(f ) with inactive correction
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On the left: ν and Pr along time.
On the right: convergence of the logarithms of |T − T11| and q
the Prandtl number numerically captured is equal to

Prn =
2.8971
4.5001

= 0.6428
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Numerical results for an homogeneous case:
∂t f = D(f ) with active correction
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On the left: behaviour of the diagonal components T11,T22,T33 of tensor
Θ and of its trace T .
On the right: histogram of the first component of velocity at time t = 0.5.
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Numerical results for an homogeneous case:
∂t f = D(f ) with active correction

.
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On the left: ν and Pr along time.
On the right: convergence of the logarithms of |T − T11| and q
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Numerical results for an homogeneous case:
∂t f = D(f ) with active correction
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On the left: comparison between log(|T − T11|) ant its linear fitting.
On the right: comparison between log(|q|) ant its linear fitting.
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Conclusion & Perspectives

Construction of a new kinetic model able to recover the correct Prandtl
number in the hydrodynamic limit,

More numerical tests need to be performed with a non homogeneous
code,

Extension to polyatomic gases necessary for real cases,

Extension to chemistry / sprays should be investigated.
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Numerical results for an homogeneous case:
∂t f = D(f ) for polyatomic gases

Convergence towards equilibrium for the different temperatures
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