Moment models for rarefied gas dynamics at high temperatures

Julien Mathiaud
Joint work with L. Mieussens CEA,CESTA / IMB / IPB (Bordeaux)

COA Atmospheric reentry

From rarefied flows to continuous flows

Rarefied Gas dynamics

Continuous laminar flows

Turbulent laminar flows

1 Context
2 New results for Fokker-Planck models

3 Models for vibrations
4 New results for BGK models and their extensions
5 Perspectives

1 Context

2 New results for Fokker-Planck models

Models for vibrations

New results for BGK models and their extensions

Perspectives

Steady flow

- Flow around spacecraft
- Hypersonic flows
- Sphere-cone configuration
- Quantities of interest: heat flux and aerodynamic coefficients

Looking for steady state solution: relaxation time scale \ll trajectory time scale

Cea Physical numbers

Knudsen number

Knudsen number:

$$
K n=\frac{\lambda}{L} \quad\left(\frac{\text { mean free path }}{\text { characteristic length }}\right)
$$

Prandtl number

The Prandtl number characterizes the ratio of the conductivity (λ) and the viscosity (μ) of a gas of specific heat C_{p} through: $\operatorname{Pr}=\frac{\mu C_{p}}{\lambda}$.
In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal boundary layers.It is equal to $2 / 3$ for monoatomic perfect gases

Cea Energy modes in molecules

Modes of energy in the air

Some chemistry in the air

Fig. 11.12 Composition of equilibrium air vs temperature at $1 \mathbf{a t m}$.

Boltzmann equation: $f(t, x, v)$

$$
\begin{gathered}
\partial_{t} f+v \cdot \nabla_{x} f=Q(f, f), \\
Q(f, f)(v)=\iint_{v_{*} \in \mathbb{R}^{3}, \sigma \in S^{2}}\left(f\left(v_{*}^{\prime}\right) f\left(v^{\prime}\right)-f\left(v_{*}\right) f(v)\right) r^{2}\left|v-v_{*}\right| d \sigma d v_{*}, \\
v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma \quad, \quad v_{*}^{\prime}=\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma .
\end{gathered}
$$

Advantages and drawbacks

+ Capture the correct physics: in the Chapman expansion one recovers the Prandtl number of Navier-Stokes equation which is equal to $\frac{2}{3}$ for a monoatomic gas
- High numerical cost in transitional area between 100km and 60km (6D non linear problem).

BGK equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=\frac{1}{\tau}(M(f)-f),
$$

$M(f)=\frac{\rho}{(2 \pi R T)^{3 / 2}} \exp \left(\frac{|v-u|^{2}}{2 R T}\right)$ is the Maxwellian of equilibrium satisfying:
$<f>=\int f d v=\rho,<f v>=\int f v d v=\rho u,<f \frac{1}{2}(v-u)^{2}>=\int f \frac{1}{2}(v-u)^{2} d v=\frac{3}{2} \rho T$
τ : characteristic time of collisions.

Fokker Planck equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=\frac{1}{\tau} \nabla_{v} \cdot\left((v-u) f+T \nabla_{v} f\right)
$$

Zoology of models
(2):

BGK equation and Fokker Planck equation

Advantages and drawbacks

- Physics only approximated: thermal flux underestimated. The Prandtl number is equal to 1 for BGK model and $\frac{3}{2}$ for $F P$ model.
+ Numerical cost less important in transitional area between 100km and 60km.

How to recover the correct Prandtl number?

For BGK models it has been done using the ESBGK model:

$$
\partial_{t} f+v \cdot \nabla_{X} f=\frac{1}{\tau}(G(f)-f),
$$

with $G(f)$ anisotropic Gaussian defined as:
$G(f)=\frac{\rho}{\sqrt{\operatorname{det}(2 \pi \Pi)}} \exp \left(-\frac{(v-u) \Pi^{-1}(v-u)}{2}\right)$.
Π being a tensor linked to the different temperatures of thermal agitation.

Cea Outline

1 Context

2 New results for Fokker-Planck models

Models for vibrations

New results for BGK models and their extensions

Perspectives

Equations

We consider a gas described by the particle mass density $f(t, x, v, I)$ that at time t have the position x, the velocity v and an internal energy parameter I (of internal energy $l^{2 / \delta}$:

$$
\partial_{t} f+v \cdot \nabla_{x} f=\underbrace{\frac{1}{\tau}\left(\nabla_{v} \cdot\left((v-u) f+\Pi \nabla_{v} f\right)+\partial_{l}\left(\delta f l+\frac{\delta^{2}}{2} R T_{r e l} l^{2-\frac{2}{\delta}} \partial_{l} f\right)\right)}_{D(f)}
$$

with:

$$
\begin{aligned}
& \Theta:=\frac{1}{\rho}\langle(v-u) \otimes(v-u) f\rangle, \\
& \left.E_{t r}=\frac{3}{2} \rho R T_{\text {tr }}=\left\langle\frac{1}{2}\right| v-\left.u\right|^{2} f\right\rangle, E_{\text {int }}=\frac{\delta}{2} \rho R T_{\text {int }}=\langle\varepsilon(l) f\rangle, \\
& T=\frac{3}{3+\delta} T_{t r}+\frac{\delta}{3+\delta} T_{\text {int }}, \\
& \Pi=(1-\theta)\left((1-v) R T_{\text {tr }} l d+v \Theta\right)+\theta R T l d, \\
& T_{\text {rel }}=(1-\theta) T_{\text {int }}+\theta T .
\end{aligned}
$$

where the coefficients v and θ are some free parameters to be fitted.

Conservation properties

Proposition

We assume v satisfies a positiveness condition for Π and that $v<1$. The collision operator D conserves mass, momentum, and energy:

$$
\left\langle\left(1, v, \frac{1}{2}|v|^{2}+I^{2 / \delta}\right) D(f)\right\rangle=0
$$

It satisfies the dissipation of the entropy:

$$
\langle D(f) \log f\rangle \leq 0
$$

and the equilibrium property:

$$
D(f)=0 \Leftrightarrow f=G_{p}(f) \Leftrightarrow f=M_{p}(f) .
$$

with:

$$
\begin{aligned}
& M_{p}(f)=\frac{\rho \Lambda_{\delta}}{(2 \pi)^{3 / 2}(R T)^{(3+\delta) / 2}} \exp \left(-\frac{|v-u|^{2}}{2 R T}-\frac{R^{2 / \delta}}{R T}\right), \\
& G_{p}(f)=\frac{\rho \Lambda_{\delta}}{\sqrt{\operatorname{det}(2 \pi \Pi)}\left(R T_{\text {rel }}\right)^{\delta / 2}} \exp \left(-\frac{1}{2}\binom{v-u}{\delta l}^{T}\left(\begin{array}{c|c}
\Pi & 0 \\
\hline 0 & \frac{\delta^{2}}{2} R T_{r e l} l^{2-\frac{2}{\delta}}
\end{array}\right)^{-1}\binom{v-u}{\delta l}\right) .
\end{aligned}
$$

Navier-Stokes limit through Chapmann-Enskog expansion

The moments of f satisfy, up to $O\left(K n^{2}\right)$, the Navier-Stokes equations:

$$
\begin{aligned}
& \partial_{t} \rho+\nabla \cdot \rho u=0 \\
& \partial_{t} \rho u+\nabla \cdot(\rho u \otimes u)+\nabla p=-\nabla \cdot \sigma \\
& \partial_{t} E+\nabla \cdot(E+p) u=-\nabla \cdot q-\nabla \cdot(\sigma u),
\end{aligned}
$$

where the shear stress tensor and the heat flux are given by

$$
\sigma=-\mu\left(\nabla u+(\nabla u)^{T}-\alpha \nabla \cdot u\right), \quad \text { and } \quad q=-\kappa \nabla \cdot T,
$$

with the following values of the viscosity and heat transfer coefficients (in dimensional variables).
$\mu=\frac{\tau p}{2(1-(1-\theta) v)}, \quad \alpha=(\gamma-1)-\frac{(1-v)(1-\theta)}{\theta}\left(\frac{5}{3}-\gamma\right) \quad$ and $\quad \kappa=\frac{5+\delta}{6} \tau p R$,
and $\gamma=\frac{\delta+5}{\delta+3}$. Moreover, the corresponding Prandtl number is

$$
\operatorname{Pr}=3 /(2(1-(1-\theta) v))
$$

Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process reads:

$$
\begin{gathered}
d V_{i}(t)=-\frac{d t}{\tau}\left(V_{i}(t)-u\right)+A_{v} d B_{v}(t) \\
d \varepsilon_{i}(t)=-\frac{2 d t}{\tau}\left(\varepsilon_{i}(t)-\frac{\delta}{2} R T_{r e l}\right)+2 \sqrt{R T_{r e l} \varepsilon_{i}(t)} d B_{\varepsilon}(t) \\
V_{i}^{n+1}=\left(1-\frac{\Delta t}{\tau}\right)\left(V_{i}^{n}-u\right)+\sqrt{\frac{2 \Delta t}{\tau}} A\left(\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right) \\
\varepsilon_{i}^{n+1}=\left(\left(\sqrt{\varepsilon_{i}^{n}}+\sqrt{\frac{d t}{\tau} R T_{r e l} B_{\varepsilon}}\right)^{2}+(\delta-1) R T_{r e l} \frac{d t}{\tau}\right) /\left(1+\frac{2 d t}{\tau}\right)
\end{gathered}
$$

Figure: Convergence of the directional translational temperatures and the internal temperature to their equilibrium value.

Figure: Comparison at Mach 2, $\mathrm{Kn}=0.05$ between DSMC and FP in collaboration with H. Gorji (RWTH Aachen, Germany)

Cea Outline

1 Context

2 New results for Fokker-Planck models

3 Models for vibrations

New results for BGK models and their extensions

Perspectives

Simple vibratory models

Definition

Let $f(t, x, v, \varepsilon, i)$ be the mass density distribution of particles with position x, velocity v, internal energy ε, and in the i-th vibrational energy level, such that its vibrational energy is $i R T_{0}$ (T_{0} : characteristic vibrational temperature of the molecule). The corresponding local equilibrium distribution is defined by:

$$
\begin{aligned}
& M_{v i b}[f](v, \varepsilon, i)=\frac{\rho}{\sqrt{2 \pi R T^{3}}} \frac{1-e^{-T_{0} / T}}{R T} \exp \left(-\frac{\frac{1}{2}|u-v|^{2}+\varepsilon+i R T_{0}}{R T}\right) \\
& \rho=\langle f\rangle_{v, \varepsilon, i}, \quad \rho u=\langle v f\rangle_{v, \varepsilon, i}, \quad \rho e=\left\langle\left(\frac{1}{2}|v-u|^{2}+\varepsilon+i R T_{0}\right) f\right\rangle_{v, \varepsilon, i},
\end{aligned}
$$

where we use the notation $\langle\phi\rangle_{v, \varepsilon, i}=\sum_{i=0}^{\infty} \iint \phi(t, x, v, \varepsilon, i) d v d \varepsilon$ for any function ϕ.
The temperature T can be recovered by inverting the relation $e=\left(\frac{5}{2}+\frac{T_{0} / T}{e^{T 0 / T}-1}\right) R T$ so that there exists T^{-1} such that $T=T^{-1}(e)$.

The entropy $H(f)$ of f is naturally defined through $H(f)=\langle f \log f\rangle_{v, \varepsilon, i}$.

Properties of the equilibrium

$$
\left.\left\langle M_{v i b}[f]\right\rangle_{v, \varepsilon, i}=\rho, \quad\left\langle v M_{v i b}[f]\right\rangle_{v, \varepsilon, i}=\rho u, \quad\left\langle\left(\frac{1}{2}(v-u)^{2}+\varepsilon+i R T_{0}\right) M_{v i b}[f]\right\rangle\right\rangle_{v, \varepsilon, i}=\rho e .
$$

Energies at equilibrium

At equilibrium, we define the following energies of translation, rotation, and vibration:

$$
\begin{align*}
& e_{t r}(T)=\left\langle\left(\frac{1}{2}(v-u)^{2}\right) M_{v i b}[f]\right\rangle_{v, \varepsilon, i}=\frac{3}{2} \rho R T, \tag{1}\\
& e_{r o t}(T)=\left\langle\varepsilon M_{v i b}[f]\right\rangle_{v, \varepsilon, i}=\rho R T, \tag{2}\\
& e_{v i b}(T)=\left\langle\left(i R T_{0}\right) M_{v i b}[f]\right\rangle_{v, \varepsilon, i}=\rho \frac{R T_{0}}{e^{T_{0} / T}-1}=\rho \frac{\delta(T)}{2} R T, \tag{3}
\end{align*}
$$

with $\delta(T)=2 \frac{T_{0} / T}{e^{e^{0 / T}-1}}$.

Reduced distributions

For computational efficiency, it is interesting to define marginal, or reduced, distributions F and G by :

$$
\begin{aligned}
& F(t, x, v, \varepsilon)=\sum_{i} f(t, x, v, \varepsilon, i) \\
& G(t, x, v, \varepsilon)=\sum_{i} i R T_{0} f(t, x, v, \varepsilon, i)
\end{aligned}
$$

The macroscopic variables defined by f can be obtained through F and G only

$$
\rho=\langle F\rangle_{v, \varepsilon}, \quad \rho u=\langle v F\rangle_{v, \varepsilon}, \quad \rho e=\left\langle\left(\frac{1}{2}(v-u)^{2}+\varepsilon\right) F\right\rangle_{v, \varepsilon}+\langle G\rangle_{v, \varepsilon} .
$$

where we use the notation $\langle\psi\rangle_{v, \varepsilon}=\iint \psi(t, x, v, \varepsilon) d v d \varepsilon$ for any function ψ.

Entropy

The reduced entropy $\mathcal{H}(F, G)$ of the system is:

$$
\mathcal{H}(F, G)=\left\langle F \log (F)+F \log \left(\frac{R T_{0} F}{R T_{0} F+G}\right)+\frac{G}{R T_{0}} \log \left(\frac{G}{R T_{0} F+G}\right)\right\rangle_{v, \varepsilon} .
$$

Proof (1)

The set $\left\{f>0\right.$ such that $\left.\sum_{i} f_{i}=F, \quad \sum_{i} i R T_{0} f_{i}=G\right\}$ is clearly convex, so that we can use a Lagrangian multiplier approach by finding a saddle point of the function \mathcal{I} defined through :

$$
\mathcal{I}(f, \alpha, \beta)=\sum_{i} f_{i} \log f_{i}-\alpha\left(\sum_{i} f_{i}-F\right)-\beta\left(\sum_{i} i R T_{0} f_{i}-G\right),
$$

where α and β are real numbers.

Proof (2)

The saddle point satisfies $\frac{\partial \mathcal{I}}{\partial f}=0$, and one deduces that f can be written $f_{i}(v, \varepsilon)=A(v, \varepsilon) \exp \left(-i B(v, \varepsilon) T_{0}\right)$. The linear constraints give:

$$
F=\sum_{i} f_{i}=\frac{A}{1-\exp \left(-B T_{0}\right)} \quad, \quad G=\sum_{i} f_{i} i R T_{0}=\frac{A R T_{0} \exp \left(-B T_{0}\right)}{\left(1-\exp \left(-B T_{0}\right)\right)^{2}}
$$

Solving this linear system gives:

$$
H(F, G)=F \log (F)+F \log \left(\frac{R T_{0} F}{R T_{0} F+G}\right)+\frac{G}{R T_{0}} \log \left(\frac{G}{R T_{0} F+G}\right),
$$

using that $G / F=e_{\text {vib }}(1 / B)$.
A final integration with respect to v and ε gives the final result:

$$
\mathcal{H}(F, G)=\langle H(F, G)\rangle_{V, \varepsilon}
$$

Proposition

We have the following properties

- the function $(F, G) \mapsto H(F, G)$ is convex.
- the minimum of $\mathcal{H}\left(F_{1}, G_{1}\right)$ on \mathcal{S} is obtained on $\left(M_{\text {vib }}(F, G), N_{\text {vib }}(F, G)\right)$ with:

$$
\begin{aligned}
& M_{v i b}(F, G)=\frac{\rho}{\sqrt{2 \pi R T^{3}}} \exp \left(-\frac{\rho|u-v|^{2}}{2 R T}\right) \frac{1}{R T} \exp \left(-\frac{\varepsilon}{R T}\right) \\
& \left.N_{v i b}(F, G)=e_{v i b}(T) M_{v i b}(F, G)\right)
\end{aligned}
$$

where $e_{\text {vib }}(T)$ is the equilibrium vibrational energy.

Properties

- We note $\mathbb{H}(F, G)$ be the positive-definite Hessian matrix of H.

$$
\mathbb{H}(F, G)=\left(\begin{array}{cc}
\frac{2}{F}-\frac{R T_{0}}{R T_{0} F G} & -\frac{1}{R T_{0} F F G} \tag{4}\\
-\frac{T_{0}}{R T_{0} F+G} & \frac{\sigma}{\left(R T_{0} F+G\right)}
\end{array}\right)
$$

It satisfies: $1=F \mathbb{H}_{11}(F, G)+G \mathbb{H}_{21}(F, G) \quad, \quad 0=F \mathbb{H}_{12}(F, G)+G H_{22}(F, G)$.

- Using $D_{1}(H)(F, G)=1+\log \left(\frac{R T_{0} F^{2}}{R T_{0} F+G}\right), D_{2}(H)(F, G)=\frac{1}{R T_{0}} \log \left(\frac{G}{R T_{0} F+G}\right)$, we have:

$$
\begin{align*}
& \mathcal{H}\left(M_{\text {vib }}(F, G), N_{\text {vib }}(F, G)\right)-\mathcal{H}(F, G) \\
& \quad \geq D_{1}(H)(F, G)\left(M_{\text {vib }}(F, G)-F\right)+D_{2}(H)(F, G)\left(N_{v i b}(F, G)-G\right) \tag{5}
\end{align*}
$$

Consequences

Equations (4) and (5) respectively give the second principle for the Fokker-Planck model and the BGK model we are going to construct.

Cea Vibrationnal BGK model with correct second principle

Model

$$
\begin{aligned}
\partial_{t} F+v \cdot \nabla_{x} F & =\frac{1}{\tau}\left(M_{v i b}[F, G]-F\right) \\
\partial_{t} G+v \cdot \nabla_{x} G & =\frac{1}{\tau}\left(N_{v i b}[F, G]-G\right)
\end{aligned}
$$

with:

$$
\begin{aligned}
F & =\sum_{i} f(t, x, v, \varepsilon, i), G=\sum_{i} i R T_{0} f(t, x, v, \varepsilon, i) \\
M_{v i b}[F, G] & =\frac{\rho}{\sqrt{2 \pi R T}^{3}} \exp \left(-\frac{\rho|u-v|^{2}}{2 p}\right) \frac{1}{R T} \exp \left(-\frac{\varepsilon}{R T}\right), \\
\rho & =\langle F\rangle_{v, \varepsilon}, \rho u=\langle F v\rangle_{v, \varepsilon}, \rho e=\left\langle F\left(\frac{1}{2}(v-u)^{2}+\varepsilon\right)\right\rangle_{v, \varepsilon}+\langle G\rangle_{v, \varepsilon}, \\
T & =T^{-1}(e) .
\end{aligned}
$$

Hydrodynamic limit

Let (F, G) be solutions of BGK equations up to $O\left(\mathrm{Kn}^{2}\right)$. Then the moments of (F, G) satisfy the following Navier-Stokes equations up to $O\left(\mathrm{Kn}^{2}\right)$:
with:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{\mathbf{x}}(\rho u)=0 \\
\partial_{t}(\rho u)+\operatorname{div}_{\mathbf{x}}(\rho u \otimes u)+\nabla_{x} p=-\operatorname{div}_{\mathbf{x}}(\sigma)+O\left(\mathrm{Kn}^{2}\right) \\
\partial_{t} E+\operatorname{div}_{\mathbf{x}}((E+p) u)=-\operatorname{div}_{\mathbf{x}}(q)-\operatorname{div}_{\mathbf{x}}(\sigma u)+O\left(\mathrm{Kn}^{2}\right), \\
E=\left\langle\left(\frac{1}{2}|v|^{2}+\varepsilon\right) F+G\right\rangle_{v, \varepsilon}=\rho e+\frac{1}{2} \rho|u|^{2}, \\
\quad \sigma=-\mu\left(\nabla_{x} u+\nabla_{x} u^{T}-\mathcal{C} \operatorname{div}_{\mathbf{x}}(u) I d\right), \\
\quad q=-\mu \nabla_{x} h,
\end{array}\right.
$$

where $h=e+R T, \mathcal{C}=\partial_{e}(R T)=\frac{R}{C_{V}(T)}, C_{V}(T)=\frac{5}{2} R+\frac{\left(T_{0} / T\right)^{2} e^{T_{0} / T}}{\left(e^{T_{0} / T}-1\right)^{2}} R$.
By defining $C_{p}=C_{v}+R$ the specific heat at constant pressure, one gets:

$$
q=-\mu C_{p} \nabla_{X} T
$$

so that as usual only a gas with a Prandtl number of one is obtained.

Model

$$
\begin{aligned}
\partial_{t} F+v \cdot \nabla_{x} F & =D_{F}(F, G), \\
\partial_{t} G+v \cdot \nabla_{x} G & =D_{G}(F, G) .
\end{aligned}
$$

with:

$$
\begin{aligned}
F & =\sum_{i} f(t, x, v, \varepsilon, i), G=\sum_{i} i R T_{0} f(t, x, v, \varepsilon, i) \\
D_{F}(F, G) & =\frac{1}{\tau}\left(\nabla_{v} \cdot\left((v-u) F+T \nabla_{v} F\right)+2 \nabla_{\varepsilon}\left(F \varepsilon+R T_{\varepsilon} \nabla_{\varepsilon} F\right)\right), \\
D_{G}(F, G) & =\frac{1}{\tau}\left(\nabla_{v} \cdot\left((v-u) G+T \nabla_{v} G\right)+2 \nabla_{\varepsilon}\left(G \varepsilon+R T \varepsilon \nabla_{\varepsilon} G f\right)\right) \\
& +\frac{2}{\tau}\left(e_{v i b}(T) F-G\right), \\
\rho & =\langle F\rangle_{v, \varepsilon}, \rho u=\langle F v\rangle_{v, \varepsilon}, \rho e=\left\langle F\left(\frac{1}{2}(v-u)^{2}+\varepsilon\right)\right\rangle_{v, \varepsilon}+\langle G\rangle_{v, \varepsilon}, \\
T & =T^{-1}(e) .
\end{aligned}
$$

Hydrodynamic limit

Let (F, G) be solutions of BGK equations up to $O\left(\mathrm{Kn}^{2}\right)$. Then the moments of (F, G) satisfy the following Navier-Stokes equations up to $O\left(\mathrm{Kn}^{2}\right)$:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{\mathbf{x}}(\rho u)=0 \\
\partial_{t}(\rho u)+\operatorname{div}_{\mathbf{x}}(\rho u \otimes u)+\nabla_{x} p=-\operatorname{div}_{\mathbf{x}}(\sigma)+O\left(\mathrm{Kn}^{2}\right) \\
\partial_{t} E+\operatorname{div}_{\mathbf{x}}((E+p) u)=-\operatorname{div}_{\mathbf{x}}(q)-\operatorname{div}_{\mathbf{x}}(\sigma u)+O\left(\mathrm{Kn}^{2}\right)
\end{array}\right.
$$

with:

$$
\begin{aligned}
& E=\left\langle\left(\frac{1}{2}|v|^{2}+\varepsilon\right) F+G\right\rangle_{v, \varepsilon}=\rho e+\frac{1}{2} \rho|u|^{2} \\
& \sigma=-\mu\left(\nabla_{x} u+\nabla_{x} u^{T}-\mathcal{C} \operatorname{div}_{\mathbf{x}}(u) / d\right), q=-\frac{2}{3} \mu \nabla_{x} h
\end{aligned}
$$

where $h=e+R T, \mathcal{C}=\partial_{e}(R T)=\frac{R}{C_{v}(T)}, C_{v}(T)=\frac{5}{2} R+\frac{\left(T_{0} / T\right)^{2} e^{T_{0} / T}}{\left(e^{T_{0} / T}-1\right)^{2}} R$.
By defining $C_{p}=C_{v}+R$ the specific heat at constant pressure, one gets:

$$
q=-\frac{2}{3} \mu C_{p} \nabla_{x} T
$$

so that as usual only a gas with a Prandtl number of $3 / 2$ is obtained.

Recovering Prandtl number: the easy part

As usual there is a need for a Gaussian equilibrium to correct the characteristics times of relaxation. So we will need to go to an ESBGK or an ESFP model...

Recovering PrandtI number: the tricky part

Since relaxation times for rotation and vibration are not of the same order there is a need for a model with more equations (3 probably) to capture correctly the relaxation phenomena: the Prandtl number cannot be the only criterion to correct the model.

Context

New results for Fokker-Planck models

Models for vibrations

4 New results for BGK models and their extensions

Perspectives

Equations

$$
\begin{equation*}
\partial_{t} f+v \cdot \nabla f=\frac{M[f]-f}{\tau} \tag{6}
\end{equation*}
$$

where the Maxwellian equilibrium is $M[f]=M[\rho, u, e]$ defined by

$$
M[f](v, \varepsilon)=\frac{\rho}{{\sqrt{2 \pi \frac{p^{\rho}}{}}}^{3}} \exp \left(-\frac{\rho|u-v|^{2}}{2 p}\right) \Lambda(\delta)\left(\frac{\rho \varepsilon}{p}\right)^{\frac{\delta}{2}-1} \frac{\rho}{p} \exp \left(-\frac{\rho \varepsilon}{p(\rho, e)}\right)
$$

The macroscopic quantities are given by

$$
\begin{aligned}
\rho & =\langle\langle f\rangle\rangle \\
u & =\frac{1}{\rho}\langle\langle f v\rangle\rangle \\
e & =\frac{1}{\rho}\left\langle\left\langle\left(\frac{|v-u|^{2}}{2}+\varepsilon\right) f\right\rangle\right\rangle
\end{aligned}
$$

with $\langle\langle\cdot\rangle\rangle=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{+}} \cdot \mathrm{d} v \mathrm{~d} \varepsilon$, and the closure relation on the pressure $p=p(\rho, e)$.

Prandtl and Schmidt numbers

Let f be the solution of BGK equation up to $O\left(\mathrm{Kn}^{2}\right)$.I Its moments satisfy the following Navier-Stokes equations up to $O\left(\mathrm{Kn}^{2}\right)$:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{\mathbf{x}}(\rho u)=0 \\
\partial_{t}(\rho u)+\operatorname{div}_{\mathbf{x}}(\rho u \otimes u)+\nabla_{x} p=-\operatorname{div}_{\mathbf{x}}(\sigma)+O\left(\mathrm{Kn}^{2}\right) \\
\partial_{t} E+\operatorname{div}_{\mathbf{x}}((E+p) u)=-\operatorname{div}_{\mathbf{x}}(q)-\operatorname{div}_{\mathbf{x}}(\sigma u)+O\left(\mathrm{Kn}^{2}\right)
\end{array}\right.
$$

with: $E=\rho e+\frac{1}{2} \rho|u|^{2} \quad, \quad \sigma=-\mu\left(\nabla_{x} u+\nabla_{x} u^{T}-\mathcal{C} \operatorname{div}_{\mathbf{x}}(u) / d\right) \quad, \quad q=-\mu \nabla_{x} h$.

$$
h=e+p / \rho \quad, \quad \mathcal{C}=\frac{\rho}{p}\left(\partial_{1} p+\frac{p}{\rho^{2}} \partial_{2} p-\frac{p}{\rho}\right)
$$

For reacting perfect gases at equilibrium $h(\rho, T)=\sum_{i} c_{i}(\rho, T) h_{i}(T)$ with c_{i} mass concentration of the i - th gas and h_{i} its enthalpy. We get that:

$$
\mu \nabla h=\mu\left(\left(\sum_{i} c_{i} c_{p_{i}}\right) \nabla T+\sum_{i} h_{i}(T) \nabla c_{i}\right)
$$

The Prandtl number is equal to one. We also note that D_{i} the multicomponent diffusion coefficient of the $i_{\text {th }}$ component is $\frac{\mu}{\rho}$ so that the Schmidt number $\frac{\mu}{\rho D_{i}}$ is equal to one .

Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Max: 2358.
Min: 127.6

Temperature(BGK2)

Max: 2365.
Min: 127.7
Figure: Velocity field and Temperature field (Top:Navier-Stokes solver NS2, bottom: new model BGK2)

Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Figure: Velocity field and Temperature field (Top: new model BGK2, bottom: old model BGK1)

Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Figure: Temperature along the axis

The MultiGaussian equilibrium model: notations

Notations

For every species of the mixture, numbered with index i :

- its concentration c_{i} depends on ρ and e only: $c_{i}=c_{i}(\rho, e)$;
- its pressure p_{i} satisfies the usual perfect gas law: $p_{i}=\rho_{i} R_{i} T$, where R_{i} is the gas constant of the species and $\rho_{i}=c_{i}(\rho, e) \rho$, so that $p_{i}=p_{i}(\rho, e)$;
- its specific energy e_{i} and enthalpy h_{i} depend on T only: $e_{i}=e_{i}(T)$ and $h_{i}=h_{i}(T)$, where $e_{i}(T)=\frac{3+\delta_{i}(T)}{2} R_{i} T+e_{i}^{f, 0}$, with $e_{i}^{f, 0}$ is the energy of formation of the i th molecule and $\delta_{i}(T)$ is the number of activated internal degrees of freedom of the molecule that might depend on the temperature, see the previous sections.
For compressible Navier-Stokes equations for an equilibrium chemically reacting mixture, these quantities are not necessary. Instead, it is sufficient to define (with analytic formulas or tables):
- the total pressure $p=\sum_{i} p_{i}(\rho, e)$ so that $p=p(\rho, e)=\rho R(\rho, e) T$, with $R(\rho, e)=\sum_{i} c_{i}(\rho, e) R_{i} ;$
- the temperature T, though the relation $e=\sum_{i} c_{i}(\rho, e) e_{i}(T)$, so that $T=T(\rho, e)$;
- the total specific enthalpy $h=\sum_{i} c_{i} h_{i}$, so that $h=h(\rho, e)=e+\frac{p(\rho, e)}{\rho}$.

Equations

$$
\begin{align*}
& \partial_{t} f+v \cdot \nabla_{\chi} f=\frac{1}{\tau}(M G E[f, g]-f) \text {, with: } M G E[f, g]=\sum_{1 \leq i \leq N} M_{i}[f, g] \\
& \partial_{t} g+v \cdot \nabla_{\chi} g=\frac{1}{\tau}(N M G E[f, g]-g), \text { with: } N M G E[f, g]=\sum_{N_{m}+1 \leq i \leq N} N_{i}[f, g] \tag{7}
\end{align*}
$$

with the following definitions for reduced Maxwellians:

$$
\begin{aligned}
& \text { for } 1 \leq i \leq N, M_{i}[f, g]=\frac{\rho c_{i}}{\left(2 \pi R_{i} T\right)^{\frac{3}{2}}} \exp \left(-\frac{|v-u|^{2}}{2 R_{i} T}\right) \\
& \text { for } N_{m}+1 \leq i \leq N, N_{i}[f, g]=\left(\frac{\delta_{i}(T)}{2} R_{i} T+e_{i}^{f, 0}\right) \frac{\rho c_{i}}{\left(2 \pi R_{i} T\right)^{\frac{3}{2}}} \exp \left(-\frac{|v-u|^{2}}{2 R_{i} T}\right),
\end{aligned}
$$

The MultiGaussian equilibrium model: closure relations

Closure

We define $c_{i}(\rho, e)$ as the mass concentration of $i-t h$ molecule, $T:=T(\rho, e)$ as the mean temperature depending on internal energy and density which are defined through the following relations:

$$
\begin{aligned}
\rho(t, x) & =\int_{\mathbb{R}^{3}} f d v=\int_{\mathbb{R}^{3}} M G E[f, g] d v \\
\rho u(t, x) & =\int_{\mathbb{R}^{3}} v f d v=\int_{\mathbb{R}^{3}} v M G E[f, g] d v, \\
\rho e(t, x) & =\int_{\mathbb{R}^{3}}\left(\frac{1}{2}|v-u|^{2} f+g\right) d v, \\
& =\int_{\mathbb{R}^{3}}\left(\frac{1}{2}|v-u|^{2} \operatorname{MGE}[f, g]+\operatorname{NMGE}[f, g]\right) d v
\end{aligned}
$$

Through the "real gas closure" we have:
$e=\sum_{1 \leq i \leq N_{m}+N_{d}} c_{i}(\rho, e)\left(\frac{3+\delta_{i}(T(\rho, e))}{2} R_{i} T(\rho, e)+e_{i}^{f, 0}\right)$, where $e_{i}^{f, 0}$ is the energy of formation of the $i_{\text {th }}$ molecule and δ_{i} the number of activated degrees of freedom of this molecule ($\delta_{i}=0$ for $i \leq N_{m}$).

NS equations

The moments of f, g, solution of the MGE model (7), satisfy the following Navier-Stokes equations, up to $O\left(\mathrm{Kn}^{2}\right)$:

$$
\begin{align*}
& \partial_{t} \rho+\nabla \cdot \rho u=0, \\
& \partial_{t} \rho u+\nabla \cdot(\rho u \otimes u)+\nabla p=-\nabla \cdot \sigma, \tag{8}\\
& \partial_{t} E+\nabla \cdot(E+p) u=-\nabla \cdot q-\nabla \cdot(\sigma u),
\end{align*}
$$

where Kn is the Knudsen number (defined below), E is the total energy density defined by $E=\left\langle\left\langle\left(\frac{1}{2}|v|^{2}+\varepsilon\right) F\right\rangle\right\rangle=\frac{1}{2} \rho|u|^{2}+\rho e$.

The MultiGaussian equilibrium model: Chapman Enskog

NS equations

σ and q are the shear stress tensor and heat flux vector defined by

$$
\begin{aligned}
\sigma & =-\mu\left(\nabla u+(\nabla u)^{T}+\left(1-\mathcal{C}_{p}\right) \nabla \cdot u l d\right) \\
q & =-\mu\left(\frac{\sum_{i} c_{i} R_{i} c_{p}{ }^{i}+\sum_{i<j} c_{i} c_{j} \frac{\left(h_{i}-h_{j}\right)^{2}}{T^{2}}}{\sum_{i} c_{i} R_{i}}\right) \nabla T-\mu \sum_{i<j} \frac{c_{i} c_{j}}{\sum_{i} c_{i} R_{i}}\left(h_{i}-h_{j}\right) \nabla\left(\frac{\mu_{i}-\mu_{j}}{T}\right) .
\end{aligned}
$$

with $h_{i}=e_{i}+R_{i} T(\rho, e)$ is the enthalpy, $\mu_{i}:=\mu_{i}(\rho, e)$ is the mass chemical potential of the i - th specie depending on ρ and e (we recall that μ defines the viscosity and not a chemical potential), and $\mathcal{C}_{p}=\frac{\rho}{p} \partial_{\rho} p+\frac{\rho}{\rho} \frac{\partial_{e} p}{p}$

The MultiGaussian equilibrium model

Some remarks

- if $N_{m}+N_{d}=1$, we recover the classical BGK model for monoatomic or polyatomic model with two distributions so that we capture the correct hydrodynamic limit with a Prandtl number of one.
- We are still unable to prove something close to a second principle for such a model even if it can capture more physics like equilibrium of two inert gases.
- The role of chemical potential in the formula is still under investigation: this term does not appear for classical Navier-Stokes equations for Atmospheric reentry with a "real gas" closure but it appears under various forms in papers for kinetic mixtures models and is linked to Onsager's relations ($\frac{1}{T}$ and $-\frac{U_{i}}{T}$ are conjugate variables for u and ρ).

CR2 Outline

1 Context

2 New results for Fokker-Planck models

Models for vibrations

4 New results for BGK models and their extensions

5 Perspectives

Cea Perspectives

Numeric

- Testing the BGK model with a law of real gas
- Pursuing tests on Fokker-Planck Models

Models

- Capturing the different relaxation times for energies,
- Going to non equilibrium chemistry with a "simple model"

Contributions

[Bar + 18] Baranger,C., Marois,G., Mathé,J., Mathiaud, J. and Mieussens,L. "A BGK model for high temperature rarefied gas flows". In: Work in progress (2018).
[MM16] J. Mathiaud and L. Mieussens. "A Fokker-Planck Model of the Boltzmann Equation with Correct Prandtl Number". In: Journal of Statistical Physics 162.2 (Jan. 2016), pp. 397-414.
[MM17] J. Mathiaud and L. Mieussens. "A Fokker-Planck Model of the Boltzmann Equation with Correct Prandtl Number for Polyatomic Gases". In: Journal of Statistical Physics 168.5 (Sept. 2017), pp. 1031-1055.
[MM18] J. Mathiaud and L. Mieussens. "Vibrational models of Boltzmann equation with correct second principle: BGK and Fokker-Planck". In: Work in progress (2018).

