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Cga Outline

Context
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Ce2 Atmospheric re-entry context

Steady flow

@ Flow around spacecraft
@ Hypersonic flows
@ Sphere-cone configuration

@ Quantities of interest: heat flux and
aerodynamic coefficients

Looking for steady state solution: relaxation time scale < trajectory time scale
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Ce2 Physical numbers

Knudsen number

@ Free molecular zone (Kn >10)
Knudsen number: ]

s KiN€tic theory

_ A mean free path
Kn = T (characteristic Iength)

4——————  Navier-Stokes (Kn < 0.1)

Prandtl number

The Prandtl number characterizes the ratio of the conductivity (1) and the viscosity ()

@
of a gas of specific heat Cp through: Pr = %.

In heat transfer problems, the Prandtl number controls the relative thickness of the
momentum and thermal boundary layers.lt is equal to 2/3 for monoatomic perfect gases
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Energy modes in molecules

Modes of energy in the air
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Ce2 Some chemistry in the air

0.9

Mole fraction

T,K x 107%

Fig. 11.12  Composition of equilibrium air vs temperature at 1 atm.
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Cga Zoology of models (1): Boltzmann equation

Boltzmann equation: (¢, x, v)

W+ v-Vif = Q(F, 1),
N = [ o (1) = ) 1)) 2 v = vl do b,

V,_v+v*+|v—v*|0 V,_v+v*_|va*|al

2 2 ' * 2 2

Advantages and drawbacks

Capture the correct physics: in the Chapman expansion one recovers the Prandtl
. . o 2 .
number of Navier-Stokes equation which is equal to 3 for a monoatomic gas

High numerical cost in transitional area between 100km and 60km (6D non linear
problem).
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Zoology of models (2): BGK equation and Fokker

C@_a Planck equation

BGK equation
;
Al + vVl = — (M(f) = f),
M(f) = —F V= U i< the Maxwellian of equilibrium satisfying:
= (2nRT)¥2 TP\ 2RT dal ying:
<f> /de—p<fV> /fvdv—pu<f v—u /f v—u

T: characteristic time of collisions.

T2

Fokker Planck equation

1
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Zoology of models (2): BGK equation and Fokker

C@_a Planck equation

Advantages and drawbacks

Physics only approximated: thermal flux underestimated. The Prandtl number is
equal to 1 for BGK model and g for FP model.

Numerical cost less important in transitional area between 100km and 60km.

How to recover the correct Prandtl number?
For BGK models it has been done using the ESBGK model:
1
otf + v - Vxf = ;(G(f) —f),

with G(f) anisotropic Gaussian defined as:

o (- vy
G(f)\/mexp< 5 )

IT being a tensor linked to the different temperatures of thermal agitation.
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Cga Outline

New results for Fokker-Planck models
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Ce2a Polyatomic model

Equations

We consider a gas described by the particle mass density f(¢, x, v, /) that at time ¢ have
the position x, the velocity v and an internal energy parameter / (of internal energy /2/¢:

2
df+ V- Vyf = 1; (vv- (v — u)f+ IV, f) +3,(51 + (;Hr,e,/zia,f))

D(f)
with: @;:1<(v—u)®(v—u)f),
P
Er = opRTy = (31v — uP1) B = SpRTi = (1)
T= SLJF(ST"—FSLMTW'

IT=(1-6)((1—v)RTyld+vO)+ 6RTId,
Trel = (1 *9)7—/‘m+97—.

where the coefficients v and 6 are some free parameters to be fitted.
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Ce2 Conservation properties

Proposition

We assume v satisfies a positiveness condition for I'T and that v < 1. The collision
operator D conserves mass, momentum, and energy:

<(1, v, AV + /2/‘5)D(f)> =0,
It satisfies the dissipation of the entropy:
(D() log f) <0,
and the equilibrium property:
D(f) = 0 & f = Gp(f) = f = Mp(f).

with: _ phs _v_up PP
Mp(f) (2r)%72 (RT) B2 exp 2RT AT )’

=
Gy(f) = oAs xp 717( v—u )T 1 _ 0 ( v7u> _
i /det(27I1) (RT,e)?/2 2\ ol 0 | ZRTuP ol
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Ce2y Hydrodynamic limit

Navier-Stokes limit through Chapmann-Enskog expansion

The moments of f satisfy, up to O(Kn?), the Navier-Stokes equations:

i+ V- pu=0,
dipu+ V- (pu@u)+Vp=—-V-o0,
IWE+V - (E+plu=-V-q—V-(ou),
where the shear stress tensor and the heat flux are given by
c=—u(Vu+(Vu)" —aV-u), and g=—«V-T,

with the following values of the viscosity and heat transfer coefficients (in dimensional
variables).

and y = gj—g. Moreover, the corresponding Prandtl number is

Pr=3/(2(1—(1—0)W)).
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tga Numerical 0-D scheme

Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process reads:

() = —Z (V) - u)+ AdBy )

2dt )

deft) = 22 (si(t) ~ AT ) +2y/ T (1) ot

B

B>

B

2

dt 2dl‘
et = (( e7+\/TRT,e,Bg> +(6-1) F?T,e,) / (1 +—

firg

w
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Cga Numerical results: 0D and 2D

—=T11
e T22
33
—Ttr
Tint

Temperatures

.
5 6 7 8 o 10 [:5
Time
Figure: Convergence of the directional Figure: Comparison at Mach 2, Kn=0.05
translational temperatures and the internal  between DSMC and FP in collaboration
temperature to their equilibrium value. with H. Gorji (RWTH Aachen, Germany)
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Cga Outline

Models for vibrations
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Ce2y Simple vibratory models

Definition

Let f(t, x, v, ¢, i) be the mass density distribution of particles with position x, velocity v,
internal energy ¢, and in the i-th vibrational energy level, such that its vibrational energy
is iRTy (Tp: characteristic vibrational temperature of the molecule). The corresponding
local equilibrium distribution is defined by:

. 1-e /T 3lu—v|?+e+iRT;
Myplf](v.e,i) = —E— ——Z— e <_2 |RT :
V2rRT
1 .
p= i pu= Wiy ve=((Glv-ul+etiAT)r) |
v,e,i
where we use the notation (¢), . ; = L2 [/ ¢(t, X, v, &, i) dvde for any function ¢.

The temperature T can be recovered by inverting the relation e = (g + eTTU"/TL ) RT so

that there exists T~' such that T = T~ (e).

The entropy H(f) of f is naturally defined through H(f) = (flogf), . ;.
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Cga Some properties and notations

Properties of the equilibrium

—_

(Myip[f])y ei =0, (VMyip[f])y . i = pU, <(§(V—U)2+€+/RT0)Mw‘b[f]> = pe.

V.l

Energies at equilibrium

At equilibrium, we define the following energies of translation, rotation, and vibration:

en(T) = (3= IMlf]) = SpAT, (1
€rot(T) = <£Mvib[f]>v,s,i = pRT, (2
up(T) = (IRTo) Mgl = p it = 3 LT, ®

with 5(T) = 274 .
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tga Reduced models for vibrations: construction

Reduced distributions

For computational efficiency, it is interesting to define marginal, or reduced, distributions
Fand Gby:

F(t x,v,e) thXVfZI

G(t,x,v,e) = Z/RTof(z‘,x, v,ei).

i
The macroscopic variables defined by f can be obtained through F and G only

p=(Flver U= po= (=02 +IF) +(Gly,.

v.e

where we use the notation (i), . = [[ ¥(t, x, v, ) dvde for any function .
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Cga Reduced models: entropy

Entropy
The reduced entropy H(F, G) of the system is:

RToF G G
H(F,G) = <F|og(F) + Flog (ﬁ) + AT, log (m>>
v,e

Proof (1)

The set {f > 0suchthat };fi = F, Y;iRTofi = G} is clearly convex, so that we can
use a Lagrangian multiplier approach by finding a saddle point of the function Z defined
through :

I(f,w, B) = Zflogf—a(Zf— >— (ZIHTO)‘,-—G),

i

where « and B are real numbers.
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Cga Reduced models: entropy

Proof (2)

The saddle point satisfies %—f = 0, and one deduces that f can be written
fi(v,e) = A(v, ¢) exp (—iB(v, €) Ty). The linear constraints give:

A _ ARTy exp (—BTq)
F=Yf= G=) fiRTy = ;
;’ 1—exp (—BTo) ;’ ° T (1 —exp(—BTy))?

Solving this linear system gives:

RToF G G
H(F, G) = Flog(F) + F log (W%—G) + AT, log (m> ,

using that G/ F = e, (1/B).
A final integration with respect to v and ¢ gives the final result:

H(F,G) = (H(F,G))y.
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tea Reduced models: H-theorem

Proposition
We have the following properties
@ the function (F, G) — H(F, G) is convex.
@ the minimum of H(Fy, Gy) on S is obtained on (M, (F, G), Nyjp(F, G)) with:

- P o PluVEN 1 (- E
Myip(F, G) = oA eXF’( 2RT )Rrexp( RT)'
Nyin(F, G) = eyip(T)Myip(F, G)),

where e, (T) is the equilibrium vibrational energy.
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tea Mathematical properties of the entropy

Properties
@ We note H(F, G) be the positive-definite Hessian matrix of H.
$-mifs A
H(F.G) = | """ F (4)
AGFTG  GRTGFF0)

It satisfies: 1 = FIH14 (F G) + GHo4 (F G) , 0= FIH12(F, G) + G]I‘Igz(F, G)
© Using Di(H)(F, G) = 1+ log (HT F+G>  Do(H)(F, G) = gf; log (WCF:CJ we
have:
H(Myip(F, G), Nvip(F, G)) — H(F, G)
> Di(H)(F, G)(Myip(F, G) = F) + D2(H)(F, G)(Nyip(F, G) — G)  (5)

Consequences

Equations (4) and (5) respectively give the second principle for the Fokker-Planck model
and the BGK model we are going to construct.

v
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tga Vibrationnal BGK model with correct second principle

Model
with:
F
Mvib[Fv G]
Y
T

0tF +v-VxF = (Mvib[Fr G}—F) ,

0tG+Vv-VxG =

S A

(Mvin [ F, G] = G) .

Y f(t,x,v,e,0i),G=Y iRTof(t, X, v,¢i),
i

!

= v\ 1
1 2
(Fhverpu=(Fo)yepe= (F(G0=u2+e)) +(@,
T '(e).
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tea Hydrodynamic limit for BGK model

Hydrodynamic limit

Let (F, G) be solutions of BGK equations up to O(Kn?). Then the moments of (F, G)
satisfy the following Navier-Stokes equations up to O(Kn?):

dtp + divx (pu) =0
¢ (ou) + divy (ou @ U) + Vxp = —divx () + O(Kn?)
0¢E + divy ((E + p)u) = —divx(q) — divx(cu) + O(Kn?),

. 12 _ 1.2
with: E_<<2|v| +8>F+G>v'£—pe+2p|u| ,
og=—Hu <VXU+V)(UT _Clex(U)ld) 0
q=—uVxh,

2T/ T
where h= e+ AT, C = 3¢(RT) = gl Cu(T) = §R + %R

By defining Cp = Cy + R the specific heat at constant pressure, one gets:
q = —‘M CPVX T,

so that as usual only a gas with a Prandtl number of one is obtained.
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Vibrationnal Fokker-Planck model with correct second

principle

Model

with:

De(F, G)

Dg(F, G)

WF+Vv-ViF = Dg(F.G),
atG+V'VxG = DG(F,G)

Y f(tx,v.e, i), G = Y iRTof (X, v,¢,1),

(Vv ((v—u)F+ TV F) +2Ve(Fe+ RTeV:F)),
(Vv ((v—u)G+ TV, G) +2V,(Ge + RTeVGf))
(evib(T)F = G),

Flye ot = (FV), . .p6 = <F(%(v—u)2+s)>“+ (G)ye.

T '(e).

AN == <

—~
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tea Hydrodynamic limit for Fokker-Planck model

Hydrodynamic limit
Let (F, G) be solutions of BGK equations up to O(Kn?). Then the moments of (F, G)
satisfy the following Navier-Stokes equations up to O(Kn?):
dip + divx(pu) =0
3t(pu) + divx (ou @ U) + Vxp = —divg(cr) + O(Kn?)
0¢E + divx((E + p)u) = —divx(q) — divx(cu) + O(Kn?),
. 1
with: —{(Zl1y2 —
E_<<2|v| +s>F+G> =pe+ -

v.e

0=t (Vatrt VeuT —Caivg(u)ld) ,q = *gﬂvx

where h = e+ AT, C = 36(RT) = 4, C/(T) = §R+ TofTfen]

By defining Cp = Cy + R the specific heat at constant pressure, one gets:
2
q= —gP’CpVX "

so that as usual only a gas with a Prandtl number of 3/2 is obtained.
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Ce2 Perspectives

Recovering Prandtl number: the easy part

As usual there is a need for a Gaussian equilibrium to correct the characteristics times
of relaxation . So we will need to go to an ESBGK or an ESFP model...

Recovering Prandtl number: the tricky part

Since relaxation times for rotation and vibration are not of the same order there is a
need for a model with more equations (3 probably) to capture correctly the relaxation
phenomena: the Prandtl number cannot be the only criterion to correct the model.
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Cga Outline

New results for BGK models and their extensions
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Equations

dif +v-Vf=

where the Maxwellian equilibrium is M[f] =
M[f](v,e) = —F

The macroscopic quantities are given by

o = (N,
u = S,

-

with ((-)

plu—v[?
e | MG

M[f] — f

T

Mip, u, €] defined by

2
(5) "5
P p

)

= [Jrexgr+ -dvde, and the closure relation on the pressure p = p(p, €).

p<*mfa)'

New results for BGK models and their extensions
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tea Chapman-Enskog expansion

Prandtl and Schmidt numbers
Let f be the solution of BGK equation up to O(Kn?).I Its moments satisfy the following
Navier-Stokes equations up to O(Kn?):
dip +divx(pu) =0
dt(pu) + divk(pu ® u) + Vxp = —divx(c) + O(Kn?)
3¢E + divx ((E + p)u) = —divx(q) — divx(ct) + O(Kn?),
with: E =pe-+ %p\u\z , o=—p (quJr Vxul deivx(u)ld) . q=—puVxh.

P p P
h=e+p/p , C:7<a +L9 —7>.
p/p p \21P+ 020~

For reacting perfect gases at equilibrium h(p, T) = ¥; ¢i(p, T)h;(T) with ¢; mass
concentration of the i — th gas and h; its enthalpy. We get that:

uVh=upu ((Zc,-cp,)VT+Zh,-(T)VC,-> .

The Prandtl number is equal to one. We also note that D; the multicomponent diffusion
coefficient of the iy, component is % so that the Schmidt number ﬁ is equal to one .

v
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Results on a mixture of two non-reacting gases

Velocity (NS2) Temperature (NS2)
2267. 2358.
-: 1700. - 1800.
— 1133. 1243.
566.6 — 685.2
— 0.003347 127.6
Max: 2267. Max: 2358,
Min: 0.003347 Min: 127.6
Velocity (BGK2) Temperature(BGK2)
2267. 2365.
—1134. — 1247.
—566.8 687.1
0.002754 127.7
. e Max: 2267. Max: 2365.
-0.10  0.00 0.10 Min: 0.002754 Min: 127.7

Figure: Velocity field and Temperature field (Top:Navier-Stokes solver NS2, bottom: new
model BGK2)
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Ce2 Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Velocity (BGK2)

2267.

Temperature (BGK2)

— 1134,
566.8
0.002754 127.7
Max: 2267. Max: 2365,
Min: 0.002754 Min: 127.7

Velocity (BGK1)

2267.

Temperature (BGK1)

2695.

— 1134, — 141

—566.8 769.5

0.300 Max: 2267 28 . Max: 26952
-0.10 0.00 0.10 Min: 0.002846 -0.10 0.00 0.10 Min: 127.7

Figure: Velocity field and Temperature field (Top: new model BGK2, bottom: old model
BGK1)
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Ce2 Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

2500 Temperature (BGK2)
L m—— Y aimnen Temperature (BGK1)
2000
X
<
g
3 1500
+
©
v
S
g 1000
[
500
0.00 0.025 0.05 0.075 0.10
Distance from the stagnation point
Figure: Temperature along the axis
v
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Ce2y The MultiGaussian equilibrium model: notations

Notations
For every species of the mixture, numbered with index i:
@ its concentration ¢; depends on p and e only: ¢; = ci(p, ) ;

9 its pressure p; satisfies the usual perfect gas law: p; = p;R; T, where R; is the gas
constant of the species and p; = c¢;(p, €)p, so that p; = p;(p, e) ;

@ its specific energy e; and enthalpy h; depend on T only: e; = €;(T) and
hi = hi(T), where e;(T) = Z5 R, T 1 /0, with e/* is the energy of formation of
the ith molecule and 4;( T) is the number of activated internal degrees of freedom
of the molecule that might depend on the temperature, see the previous sections.

For compressible Navier-Stokes equations for an equilibrium chemically reacting
mixture, these quantities are not necessary. Instead, it is sufficient to define (with
analytic formulas or tables):

@ the total pressure p = Y, pi(p, e) so that p = p(p, €) = pR(p, e) T, with
R(p,e) = ¥Lici(p.e)R;;
@ the temperature T, though the relation e = Y_; ci(p, e)e;(T),sothat T = T(p, e) ;

@ the total specific enthalpy h = Y, cih;, so that h = h(p,e) = e+ @.
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tea The MultiGaussian equilibrium model: model

Equations

Af+ v Vyf == (MGE[f g] - f),with: MGE[f,g) = Y Mj[f.g]
1<i<N

1 .
9g+v- Vg = —(NMGEIf, g] - g), with: NMGE[f,.g] = Y. Nilf.g]
Np+1<i<N

(7)

with the following definitions for reduced Maxwellians:

9 44 ‘V U|2
for1 <i< N Mf,gl=—""—""Fexp|— s
I[ } (271[-?’7')% ( 2HI‘

(T ) _yl2
i I
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Ce2y The MultiGaussian equilibrium model: closure relations

Closure

We define c;(p, e) as the mass concentration of i — th molecule, T := T(p, e) as the
mean temperature depending on internal energy and density which are defined through
the following relations:

o(t,x) = .]R3fdv:./]RaMGE[f,g]dv

pu(t,x) = /]Ravfdv:/]RavMGE[f,g}dv,
_ 1 2

peltn) = [ (zlv—uPr+g)dv,

-/ (%\v — uPMGETF, 9] + NMGETF, g}) v

Through the “real gas closure” we have:
€ = L 1<i<Ny+Ny Ci(p. €) (MF&T(@ e)+ ef'o), where e,."0 is the energy of

formation of the iy, molecule and §; the number of activated degrees of freedom of this
molecule (6; = 0 for i < Npy).
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The MultiGaussian equilibrium model: Chapman En-

CA skog

NS equations
The moments of f, g, solution of the MGE model (7), satisfy the following Navier-Stokes
equations, up to O(Kn?):
otp+ V. -pu=0,
dipu+ V- (puku)+Vp=-V .o, (8)
GE+V - (E4+pu=-V-q—V-(ou),
where Kn is the Knudsen number (defined below), E is the total energy density defined
by E = <<(1§|v\2 +s)F>> = Lo|uf® + pe.
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The MultiGaussian equilibrium model: Chapman En-

CA skog

NS equations

o and q are the shear stress tensor and heat flux vector defined by

" (VU+(Vu)T+(1 fcp)v-u/d),

(hi—hy)?
g=—pu Yi iR, Cp + Yicj CiC 2 Z hj)V (V/ Vj)
icj Z/ i / T

ZI cI i

with h; = e; + R; T (p, e) is the enthalpy, y; := p;(p, e) is the mass chemical potential of
the / — th specie depending on p and e (we recall that  defines the viscosity and not a
chemical potential), and Cp = £3,p + & aep
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Ce2y The MultiGaussian equilibrium model

Some remarks

@ if Nm+ Ny = 1, we recover the classical BGK model for monoatomic or polyatomic
model with two distributions so that we capture the correct hydrodynamic limit with
a Prandtl number of one.

@ We are still unable to prove something close to a second principle for such a model
even if it can capture more physics like equilibrium of two inert gases.

@ The role of chemical potential in the formula is still under investigation: this term
does not appear for classical Navier-Stokes equations for Atmospheric reentry with
a "real gas” closure but it appears under various forms in papers for kinetic
mixtures models and is linked to Onsager’s relations (lT and —% are conjugate
variables for u and p).
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Cea Outline

Perspectives
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Ce2 Perspectives

Numeric

@ Testing the BGK model with a law of real gas
@ Pursuing tests on Fokker-Planck Models

Models

@ Capturing the different relaxation times for energies,

@ Going to non equilibrium chemistry with a “simple model”
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