Moment models for rarefied gas dynamics at high temperatures

JULIEN MATHIAUD

Joint work with L. Mieussens CEA,CESTA / IMB / IPB (Bordeaux)

International Workshop on Simulating Interacting Particles

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

From rarefied flows to continuous flows

Rarefied Gas dynamics

Continuous laminar flows

Turbulent laminar flows

1 Context

- 2 New results for Fokker-Planck models
- 3 Models for vibrations
- 4 New results for BGK models and their extensions

5 Perspectives

1 Context

- 2 New results for Fokker-Planck models
- 3 Models for vibrations
- 4 New results for BGK models and their extensions
- 5 Perspectives

Steady flow

- Flow around spacecraft
- Hypersonic flows
- Sphere-cone configuration
- Quantities of interest: heat flux and aerodynamic coefficients

Looking for steady state solution: relaxation time scale « trajectory time scale

Knudsen number

Knudsen number:

 $Kn = \frac{\lambda}{L} \quad (\frac{\text{mean free path}}{\text{characteristic length}})$

Prandtl number

The Prandtl number characterizes the ratio of the conductivity (λ) and the viscosity (μ) of a gas of specific heat C_p through: $Pr = \frac{\mu C_p}{\lambda}$. In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal boundary layers. It is equal to 2/3 for monoatomic perfect gases

Energy modes in molecules

Modes of energy in the air

⁶7

	Translation	Rotation	Vibration	Electronic
Typical temperature	1	3	600	10000
of activation (K)				

-07

Some chemistry in the air

Fig. 11.12 Composition of equilibrium air vs temperature at 1 atm.

Context

J. MATHIAUD | CEA,CESTA / IMB / IPB (Bordeaux) | PAGE 7/44

Zoology of models (1): Boltzmann equation

Boltzmann equation: f(t, x, v)

(

 $\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \mathbf{Q}(f, f),$

$$Q(f,f)(v) = \iint_{v_* \in \mathbb{R}^3, \sigma \in \mathbb{S}^2} \left(f(v'_*) f(v') - f(v_*) f(v) \right) r^2 |v - v_*| \, d\sigma \, dv_*,$$

$$v' = rac{v+v_*}{2} + rac{|v-v_*|}{2}\sigma$$
 , $v'_* = rac{v+v_*}{2} - rac{|v-v_*|}{2}\sigma$

Advantages and drawbacks

- + Capture the correct physics: in the Chapman expansion one recovers the Prandtl number of Navier-Stokes equation which is equal to $\frac{2}{3}$ for a monoatomic gas
- High numerical cost in transitional area between 100km and 60km (6D non linear problem).

Zoology of models (2): BGK equation and Fokker Planck equation

BGK equation

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{X}} f = \frac{1}{\tau} \left(\mathbf{M}(f) - f \right),$$

 $M(t) = rac{
ho}{(2\pi RT)^{3/2}} \exp\left(rac{|v-u|^2}{2RT}
ight)$ is the Maxwellian of equilibrium satisfying:

$$< f > = \int f dv =
ho_{,} < f v > = \int f v dv =
ho u_{,} < f \frac{1}{2} (v - u)^{2} > = \int f \frac{1}{2} (v - u)^{2} dv = \frac{3}{2}
ho T$$

τ: characteristic time of collisions.

Fokker Planck equation

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\tau} \nabla_{\mathbf{v}} \cdot ((\mathbf{v} - \mathbf{u})f + T \nabla_{\mathbf{v}} f),$$

Zoology of models (2): BGK equation and Fokker Planck equation

Advantages and drawbacks

- Physics only approximated: thermal flux underestimated. The Prandtl number is equal to 1 for BGK model and $\frac{3}{2}$ for *FP* model.
- + Numerical cost less important in transitional area between 100km and 60km.

How to recover the correct Prandtl number?

For BGK models it has been done using the ESBGK model:

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{X}} f = \frac{1}{\tau} \left(\mathbf{G}(f) - f \right),$$

with G(f) anisotropic Gaussian defined as:

$$G(f) = \frac{\rho}{\sqrt{\det(2\pi\Pi)}} \exp\left(-\frac{(\nu-u)\Pi^{-1}(\nu-u)}{2}\right)$$

 Π being a tensor linked to the different temperatures of thermal agitation.

1 Context

- 2 New results for Fokker-Planck models
- 3 Models for vibrations
- 4 New results for BGK models and their extensions
- 5 Perspectives

Equations

We consider a gas described by the particle mass density f(t, x, v, I) that at time t have the position x, the velocity v and an internal energy parameter I (of internal energy $I^{2/\delta}$:

$$\partial_{t}f + \mathbf{v} \cdot \nabla_{\mathbf{x}}f = \underbrace{\frac{1}{\tau} \left(\nabla_{\mathbf{v}} \cdot \left((\mathbf{v} - u)f + \Pi \nabla_{\mathbf{v}}f \right) + \partial_{I} (\delta f I + \frac{\delta^{2}}{2} R T_{rel} I^{2 - \frac{2}{\delta}} \partial_{I} f) \right)}_{D(f)},$$
$$\Theta := \frac{1}{\rho} \left\langle (\mathbf{v} - u) \otimes (\mathbf{v} - u)f \right\rangle,$$

with:

$$\begin{split} \Theta &:= \frac{1}{\rho} \left\langle (v - u) \otimes (v - u) f \right\rangle, \\ E_{tr} &= \frac{3}{2} \rho R T_{tr} = \left\langle \frac{1}{2} |v - u|^2 f \right\rangle, \\ E_{int} &= \frac{\delta}{2} \rho R T_{int} = \left\langle \varepsilon(I) f \right\rangle \\ T &= \frac{3}{3 + \delta} T_{tr} + \frac{\delta}{3 + \delta} T_{int}, \\ \Pi &= (1 - \theta) \left((1 - v) R T_{tr} I d + v \Theta \right) + \theta R T I d, \\ T_{rel} &= (1 - \theta) T_{int} + \theta T. \end{split}$$

where the coefficients ν and θ are some free parameters to be fitted.

Polyatomic model

Conservation properties

Proposition

We assume ν satisfies a positiveness condition for Π and that $\nu < 1$. The collision operator *D* conserves mass, momentum, and energy:

$$\left\langle (1, \mathbf{v}, \frac{1}{2} |\mathbf{v}|^2 + l^{2/\delta}) D(f) \right\rangle = 0,$$

It satisfies the dissipation of the entropy:

 $\langle D(f) \log f \rangle \leq 0$,

and the equilibrium property:

$$D(f) = 0 \Leftrightarrow f = G_p(f) \Leftrightarrow f = M_p(f).$$

with:
$$M_p(f) = \frac{\rho \Lambda_{\delta}}{(2\pi)^{3/2} (RT)^{(3+\delta)/2}} \exp\left(-\frac{|v-u|^2}{2RT} - \frac{f^{2/\delta}}{RT}\right),$$
$$G_p(f) = \frac{\rho \Lambda_{\delta}}{\sqrt{\det(2\pi\Pi)(RT_{rel})^{\delta/2}}} \exp\left(-\frac{1}{2} \left(\begin{array}{c} v-u \\ \delta I \end{array}\right)^T \left(\frac{\Pi}{0} | \frac{0}{\frac{\delta^2}{2} RT_{rel} I^{2-\frac{2}{\delta}}}\right)^{-1} \left(\begin{array}{c} v-u \\ \delta I \end{array}\right)\right).$$

Hydrodynamic limit

Navier-Stokes limit through Chapmann-Enskog expansion

The moments of *f* satisfy, up to $O(Kn^2)$, the Navier-Stokes equations:

 $\begin{aligned} \partial_t \rho + \nabla \cdot \rho u &= \mathbf{0}, \\ \partial_t \rho u + \nabla \cdot (\rho u \otimes u) + \nabla \rho &= -\nabla \cdot \sigma, \\ \partial_t E + \nabla \cdot (E + \rho) u &= -\nabla \cdot q - \nabla \cdot (\sigma u), \end{aligned}$

where the shear stress tensor and the heat flux are given by

$$\sigma = -\mu igl(
abla u + (
abla u)^T - lpha
abla \cdot u igr), ext{ and } q = -\kappa
abla \cdot T,$$

with the following values of the viscosity and heat transfer coefficients (in dimensional variables).

$$\mu = \frac{\tau p}{2(1 - (1 - \theta)\nu)}, \quad \alpha = (\gamma - 1) - \frac{(1 - \nu)(1 - \theta)}{\theta} \left(\frac{5}{3} - \gamma\right) \quad \text{and} \quad \kappa = \frac{5 + \delta}{6} \tau p R,$$

and $\gamma = \frac{\delta + 5}{\delta + 3}$. Moreover, the corresponding Prandtl number is

 $\Pr = 3/(2(1 - (1 - \theta)\nu)).$

J. MATHIAUD | CEA,CESTA / IMB / IPB (Bordeaux) | PAGE 14/44

Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process reads:

$$\begin{aligned} dV_{i}(t) &= -\frac{dt}{\tau} \left(V_{i}(t) - u \right) + A_{v} dB_{v}(t), \\ d\varepsilon_{i}(t) &= -\frac{2dt}{\tau} \left(\varepsilon_{i}(t) - \frac{\delta}{2} RT_{rel} \right) + 2\sqrt{RT_{rel}\varepsilon_{i}(t)} dB_{\varepsilon}(t), \\ V_{i}^{n+1} &= \left(1 - \frac{\Delta t}{\tau} \right) \left(V_{i}^{n} - u \right) + \sqrt{\frac{2\Delta t}{\tau}} A \begin{pmatrix} B_{1} \\ B_{2} \\ B_{3} \end{pmatrix} \\ \varepsilon_{i}^{n+1} &= \left(\left(\sqrt{\varepsilon_{i}^{n}} + \sqrt{\frac{dt}{\tau} RT_{rel}} B_{\varepsilon} \right)^{2} + (\delta - 1) RT_{rel} \frac{dt}{\tau} \right) / \left(1 + \frac{2dt}{\tau} \right), \end{aligned}$$

Numerical results: 0D and 2D

Figure: Convergence of the directional translational temperatures and the internal temperature to their equilibrium value.

Figure: Comparison at Mach 2, Kn=0.05 between DSMC and FP in collaboration with H. Gorji (RWTH Aachen, Germany)

1 Context

- 2 New results for Fokker-Planck models
- 3 Models for vibrations
- 4 New results for BGK models and their extensions

5 Perspectives

Simple vibratory models

Definition

Let $f(t, x, v, \varepsilon, i)$ be the mass density distribution of particles with position x, velocity v, internal energy ε , and in the *i*-th vibrational energy level, such that its vibrational energy is *iRT*₀ (*T*₀: characteristic vibrational temperature of the molecule). The corresponding local equilibrium distribution is defined by:

$$M_{vib}[f](v,\varepsilon,i) = \frac{\rho}{\sqrt{2\pi RT^3}} \frac{1 - e^{-T_0/T}}{RT} \exp\left(-\frac{\frac{1}{2}|u-v|^2 + \varepsilon + iRT_0}{RT}\right)$$
$$\rho = \langle f \rangle_{v,\varepsilon,i}, \qquad \rho u = \langle vf \rangle_{v,\varepsilon,i}, \qquad \rho e = \left\langle \left(\frac{1}{2}|v-u|^2 + \varepsilon + iRT_0\right)f \right\rangle_{v,\varepsilon,i},$$

where we use the notation $\langle \phi \rangle_{\mathbf{v},\varepsilon,i} = \sum_{i=0}^{\infty} \iint \phi(t, \mathbf{x}, \mathbf{v}, \varepsilon, i) \, d\mathbf{v} d\varepsilon$ for any function ϕ .

The temperature *T* can be recovered by inverting the relation $e = \left(\frac{5}{2} + \frac{T_0/T}{e^{T0/T}-1}\right) RT$ so that there exists T^{-1} such that $T = T^{-1}(e)$.

The entropy H(f) of f is naturally defined through $H(f) = \langle f \log f \rangle_{v,\varepsilon,i}$.

Properties of the equilibrium

$$\langle M_{vib}[f] \rangle_{v,\varepsilon,i} = \rho, \quad \langle v M_{vib}[f] \rangle_{v,\varepsilon,i} = \rho u, \quad \left\langle (\frac{1}{2}(v-u)^2 + \varepsilon + iRT_0) M_{vib}[f] \right\rangle_{v,\varepsilon,i} = \rho e.$$

Energies at equilibrium

At equilibrium, we define the following energies of translation, rotation, and vibration:

$$e_{tr}(T) = \left\langle \left(\frac{1}{2}(v-u)^2\right) M_{vib}[f] \right\rangle_{v,\varepsilon,i} = \frac{3}{2}\rho RT,$$
(1)

$$\boldsymbol{e}_{rot(T)} = \langle \varepsilon \boldsymbol{M}_{vib}[f] \rangle_{\boldsymbol{v},\varepsilon,i} = \rho \boldsymbol{R} \boldsymbol{T}, \tag{2}$$

$$e_{\textit{vib}}(T) = \langle (iRT_0)M_{\textit{vib}}[f] \rangle_{\textit{v},\varepsilon,i} = \rho \frac{RT_0}{e^{T_0/T} - 1} = \rho \frac{\delta(T)}{2}RT,$$

with $\delta(T) = 2 \frac{T_0/T}{e^{T_0/T} - 1}$.

(3)

Reduced distributions

For computational efficiency, it is interesting to define marginal, or reduced, distributions F and G by :

$$F(t, x, v, \varepsilon) = \sum_{i} f(t, x, v, \varepsilon, i),$$

$$G(t, x, v, \varepsilon) = \sum_{i} iRT_0 f(t, x, v, \varepsilon, i).$$

The macroscopic variables defined by f can be obtained through F and G only

$$\rho = \langle F \rangle_{\mathbf{v},\varepsilon}, \qquad \rho u = \langle \mathbf{v}F \rangle_{\mathbf{v},\varepsilon}, \qquad \rho e = \left\langle \left(\frac{1}{2}(\mathbf{v}-u)^2 + \varepsilon\right)F \right\rangle_{\mathbf{v},\varepsilon} + \langle G \rangle_{\mathbf{v},\varepsilon}.$$

where we use the notation $\langle \psi \rangle_{\mathbf{v},\varepsilon} = \iint \psi(t, \mathbf{x}, \mathbf{v}, \varepsilon) \, d\mathbf{v} d\varepsilon$ for any function ψ .

Entropy

The reduced entropy $\mathcal{H}(F, G)$ of the system is:

$$\mathcal{H}(F,G) = \left\langle F \log(F) + F \log\left(\frac{RT_0F}{RT_0F+G}\right) + \frac{G}{RT_0} \log\left(\frac{G}{RT_0F+G}\right) \right\rangle_{v,\varepsilon}$$

Proof (1)

The set $\{f > 0 \text{ such that } \sum_i f_i = F, \sum_i iRT_0 f_i = G\}$ is clearly convex, so that we can use a Lagrangian multiplier approach by finding a saddle point of the function \mathcal{I} defined through :

$$\mathcal{I}(f, \alpha, \beta) = \sum_{i} f_i \log f_i - \alpha \left(\sum_{i} f_i - \mathcal{F} \right) - \beta \left(\sum_{i} i \mathcal{R} T_0 f_i - G \right),$$

where α and β are real numbers.

Reduced models: entropy

Proof (2)

The saddle point satisfies $\frac{\partial \mathcal{I}}{\partial f} = 0$, and one deduces that *f* can be written $f_i(v, \varepsilon) = \mathcal{A}(v, \varepsilon) \exp(-i\mathcal{B}(v, \varepsilon)T_0)$. The linear constraints give:

$$F = \sum_{i} f_{i} = \frac{A}{1 - \exp(-BT_{0})} \quad , \quad G = \sum_{i} f_{i} i RT_{0} = \frac{ART_{0} \exp(-BT_{0})}{(1 - \exp(-BT_{0}))^{2}}$$

Solving this linear system gives:

$$H(F,G) = F\log(F) + F\log\left(\frac{RT_0F}{RT_0F+G}\right) + \frac{G}{RT_0}\log\left(\frac{G}{RT_0F+G}\right),$$

using that $G/F = e_{vib}(1/B)$.

A final integration with respect to v and ε gives the final result:

$$\mathcal{H}(F, G) = \langle H(F, G) \rangle_{V,\varepsilon}$$

Proposition

We have the following properties

- the function $(F, G) \mapsto H(F, G)$ is convex.
- the minimum of $\mathcal{H}(F_1, G_1)$ on S is obtained on $(M_{vib}(F, G), N_{vib}(F, G))$ with:

$$\begin{split} M_{vib}(F,G) &= \frac{\rho}{\sqrt{2\pi RT^3}} \exp\left(-\frac{\rho|u-v|^2}{2RT}\right) \frac{1}{RT} \exp\left(-\frac{\varepsilon}{RT}\right),\\ N_{vib}(F,G) &= e_{vib}(T) M_{vib}(F,G)), \end{split}$$

where $e_{vib}(T)$ is the equilibrium vibrational energy.

Mathematical properties of the entropy

Properties

• We note $\mathbb{H}(F, G)$ be the positive-definite Hessian matrix of H.

$$\mathbb{H}(F,G) = \begin{pmatrix} \frac{2}{F} - \frac{RT_0}{RT_0F+G} & -\frac{1}{RT_0F+G} \\ -\frac{1}{RT_0F+G} & \frac{F}{G(RT_0F+G)} \end{pmatrix}$$
(4)

 $\text{It satisfies: } 1 = F\mathbb{H}_{11}(F,G) + G\mathbb{H}_{21}(F,G) \quad , \quad 0 = F\mathbb{H}_{12}(F,G) + G\mathbb{H}_{22}(F,G).$

• Using $D_1(H)(F, G) = 1 + \log\left(\frac{RT_0F^2}{RT_0F+G}\right)$, $D_2(H)(F, G) = \frac{1}{RT_0}\log\left(\frac{G}{RT_0F+G}\right)$, we have:

 $\begin{aligned} \mathcal{H}(M_{vib}(F,G),N_{vib}(F,G)) & - \mathcal{H}(F,G) \\ & \geq D_1(H)(F,G)(M_{vib}(F,G)-F) + D_2(H)(F,G)(N_{vib}(F,G)-G) \end{aligned}$ (5)

Consequences

Equations (4) and (5) respectively give the second principle for the Fokker-Planck model and the BGK model we are going to construct.

Vibrationnal BGK model with correct second principle

Model

Cea

$$\partial_t F + \mathbf{v} \cdot \nabla_x F = \frac{1}{\tau} \left(M_{vib}[F, G] - F \right) , \\ \partial_t G + \mathbf{v} \cdot \nabla_x G = \frac{1}{\tau} \left(N_{vib}[F, G] - G \right) .$$

with:

$$F = \sum_{i} f(t, x, v, \varepsilon, i), G = \sum_{i} iRT_{0}f(t, x, v, \varepsilon, i),$$

$$M_{vib}[F, G] = \frac{\rho}{\sqrt{2\pi RT}^{3}} \exp\left(-\frac{\rho|u-v|^{2}}{2\rho}\right) \frac{1}{RT} \exp\left(-\frac{\varepsilon}{RT}\right),$$

$$\rho = \langle F \rangle_{v,\varepsilon}, \rho u = \langle Fv \rangle_{v,\varepsilon}, \rho e = \left\langle F\left(\frac{1}{2}(v-u)^{2}+\varepsilon\right) \right\rangle_{v,\varepsilon} + \langle G \rangle_{v,\varepsilon},$$

$$T = T^{-1}(e).$$

Hydrodynamic limit for BGK model

Hydrodynamic limit

Let (F, G) be solutions of BGK equations up to $O(Kn^2)$. Then the moments of (F, G) satisfy the following Navier-Stokes equations up to $O(Kn^2)$:

$$\begin{cases} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho u) = 0\\ \partial_t(\rho u) + \operatorname{div}_{\mathbf{x}}(\rho u \otimes u) + \nabla_x \rho = -\operatorname{div}_{\mathbf{x}}(\sigma) + O(\operatorname{Kn}^2)\\ \partial_t E + \operatorname{div}_{\mathbf{x}}((E + \rho)u) = -\operatorname{div}_{\mathbf{x}}(q) - \operatorname{div}_{\mathbf{x}}(\sigma u) + O(\operatorname{Kn}^2),\\ E = \left\langle \left(\frac{1}{2}|v|^2 + \varepsilon\right)F + G\right\rangle_{v,\varepsilon} = \rho e + \frac{1}{2}\rho|u|^2,\\ \sigma = -\mu \left(\nabla_x u + \nabla_x u^T - C\operatorname{div}_{\mathbf{x}}(u) ld\right),\\ q = -\mu \nabla_x h, \end{cases}$$

with:

where h = e + RT, $C = \partial_e(RT) = \frac{R}{C_v(T)}$, $C_v(T) = \frac{5}{2}R + \frac{(T_0/T)^2 e^{T_0/T}}{(e^{T_0/T} - 1)^2}R$.

By defining $C_p = C_v + R$ the specific heat at constant pressure, one gets:

$$q=-\mu C_{p}\nabla_{x}T,$$

so that as usual only a gas with a Prandtl number of one is obtained.

Vibrationnal Fokker-Planck model with correct second principle

Model

$$\partial_t F + \mathbf{v} \cdot \nabla_{\mathbf{x}} F = D_F(F, G), \\ \partial_t G + \mathbf{v} \cdot \nabla_{\mathbf{x}} G = D_G(F, G).$$

with:

$$\begin{split} F &= \sum_{i} f(t, x, v, \varepsilon, i), G = \sum_{i} iRT_{0}f(t, x, v, \varepsilon, i), \\ D_{F}(F, G) &= \frac{1}{\tau} \left(\nabla_{v} \cdot \left((v - u)F + T\nabla_{v}F \right) + 2\nabla_{\varepsilon}(F\varepsilon + RT\varepsilon\nabla_{\varepsilon}F) \right), \\ D_{G}(F, G) &= \frac{1}{\tau} \left(\nabla_{v} \cdot \left((v - u)G + T\nabla_{v}G \right) + 2\nabla_{\varepsilon}(G\varepsilon + RT\varepsilon\nabla_{\varepsilon}Gf) \right) \\ &+ \frac{2}{\tau} \left(e_{vib}(T)F - G \right), \\ \rho &= \langle F \rangle_{v,\varepsilon}, \rho u = \langle Fv \rangle_{v,\varepsilon}, \rho e = \left\langle F \left(\frac{1}{2} (v - u)^{2} + \varepsilon \right) \right\rangle_{v,\varepsilon} + \langle G \rangle_{v,\varepsilon}, \\ T &= T^{-1}(e). \end{split}$$

Hydrodynamic limit for Fokker-Planck model

Hydrodynamic limit

Let (F, G) be solutions of BGK equations up to $O(Kn^2)$. Then the moments of (F, G) satisfy the following Navier-Stokes equations up to $O(Kn^2)$:

$$\begin{aligned} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho u) &= 0\\ \partial_t(\rho u) + \operatorname{div}_{\mathbf{x}}(\rho u \otimes u) + \nabla_x \rho &= -\operatorname{div}_{\mathbf{x}}(\sigma) + O(\operatorname{Kn}^2)\\ \partial_t E + \operatorname{div}_{\mathbf{x}}((E + \rho)u) &= -\operatorname{div}_{\mathbf{x}}(q) - \operatorname{div}_{\mathbf{x}}(\sigma u) + O(\operatorname{Kn}^2), \end{aligned}$$

with:

$$E = \left\langle \left(\frac{1}{2}|v|^2 + \varepsilon\right)F + G \right\rangle_{v,\varepsilon} = \rho e + \frac{1}{2}\rho|u|^2,$$

$$\sigma = -\mu \left(\nabla_x u + \nabla_x u^T - C \operatorname{div}_{\mathbf{x}}(u) \operatorname{Id}\right), q = -\frac{2}{3}\mu \nabla_x h,$$

where h = e + RT, $C = \partial_e(RT) = \frac{R}{C_v(T)}$, $C_v(T) = \frac{5}{2}R + \frac{(T_0/T)^2 e^{J_0/T}}{(e^{T_0/T} - 1)^2}R$. By defining $C_p = C_v + R$ the specific heat at constant pressure, one gets:

$$q=-\frac{2}{3}\mu C_p\nabla_X T,$$

so that as usual only a gas with a Prandtl number of 3/2 is obtained.

Recovering Prandtl number: the easy part

As usual there is a need for a Gaussian equilibrium to correct the characteristics times of relaxation . So we will need to go to an ESBGK or an ESFP model...

Recovering Prandtl number: the tricky part

Since relaxation times for rotation and vibration are not of the same order there is a need for a model with more equations (3 probably) to capture correctly the relaxation phenomena: the Prandtl number cannot be the only criterion to correct the model.

1 Context

- 2 New results for Fokker-Planck models
- 3 Models for vibrations
- 4 New results for BGK models and their extensions

5 Perspectives

Equations

Model

$$\partial_t f + \mathbf{v} \cdot \nabla f = \frac{M[f] - f}{\tau},$$
 (6)

where the Maxwellian equilibrium is $M[f] = M[\rho, u, e]$ defined by

$$\mathsf{M}[f](\mathbf{v},\varepsilon) = \frac{\rho}{\sqrt{2\pi\frac{\rho}{\rho}^{3}}} \exp\left(-\frac{\rho|\mathbf{u}-\mathbf{v}|^{2}}{2\rho}\right) \Lambda(\delta) \left(\frac{\rho\varepsilon}{\rho}\right)^{\frac{\delta}{2}-1} \frac{\rho}{\rho} \exp\left(-\frac{\rho\varepsilon}{\rho(\rho,e)}\right)$$

The macroscopic quantities are given by

$$\rho = \langle \langle f \rangle \rangle ,
u = \frac{1}{\rho} \langle \langle f v \rangle \rangle ,
e = \frac{1}{\rho} \left\langle \left\langle \left(\frac{|v - u|^2}{2} + \varepsilon \right) f \right\rangle \right\rangle ,$$

with $\langle \langle \cdot \rangle \rangle = \iint_{\mathbb{R}^3 \times \mathbb{R}^+} \cdot dv d\varepsilon$, and the closure relation on the pressure $p = p(\rho, e)$.

Prandtl and Schmidt numbers

Let *f* be the solution of BGK equation up to $O(Kn^2)$. Its moments satisfy the following Navier-Stokes equations up to $O(Kn^2)$:

$$\begin{cases} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho u) = 0\\ \partial_t(\rho u) + \operatorname{div}_{\mathbf{x}}(\rho u \otimes u) + \nabla_x \rho = -\operatorname{div}_{\mathbf{x}}(\sigma) + O(\mathrm{Kn}^2)\\ \partial_t E + \operatorname{div}_{\mathbf{x}}((E + \rho)u) = -\operatorname{div}_{\mathbf{x}}(q) - \operatorname{div}_{\mathbf{x}}(\sigma u) + O(\mathrm{Kn}^2),\\ \text{with:} \ E = \rho e + \frac{1}{2}\rho|u|^2 \quad , \quad \sigma = -\mu \left(\nabla_x u + \nabla_x u^T - C\operatorname{div}_{\mathbf{x}}(u)Id\right) \quad , \quad q = -\mu\nabla_x h.\\ h = e + p/\rho \quad , \quad C = \frac{\rho}{p} \left(\partial_1 p + \frac{p}{\rho^2}\partial_2 p - \frac{p}{\rho}\right). \end{cases}$$

For reacting perfect gases at equilibrium $h(\rho, T) = \sum_i c_i(\rho, T)h_i(T)$ with c_i mass concentration of the i - th gas and h_i its enthalpy. We get that:

$$\mu \nabla h = \mu \left(\left(\sum_{i} c_{i} c_{p_{i}} \right) \nabla T + \sum_{i} h_{i}(T) \nabla c_{i} \right).$$

The Prandtl number is equal to **one**. We also note that D_i the multicomponent diffusion coefficient of the i_{th} component is $\frac{\mu}{\rho}$ so that the Schmidt number $\frac{\mu}{\rho D_i}$ is equal to **one**.

Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Figure: Velocity field and Temperature field (Top:Navier-Stokes solver NS2, bottom: new model BGK2)

Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Figure: Velocity field and Temperature field (Top: new model BGK2, bottom: old model BGK1)

Results on a mixture of two non-reacting gases Mach 10, Knudsen 0.1 2500 Temperature (BGK2) Temperature (BGK1) 2000 (K) **Temperature** 1500 1000

0.05

Distance from the stagnation point

Figure: Temperature along the axis

0.075

New results for BGK models and their extensions

500

0.00

0.025

0.10

Notations

For every species of the mixture, numbered with index *i*:

- its concentration c_i depends on ρ and e only: $c_i = c_i(\rho, e)$;
- its pressure *p_i* satisfies the usual perfect gas law: *p_i* = *ρ_iR_iT*, where *R_i* is the gas constant of the species and *ρ_i* = *c_i(ρ, e)ρ*, so that *p_i* = *p_i(ρ, e)*;
- its specific energy e_i and enthalpy h_i depend on T only: $e_i = e_i(T)$ and $h_i = h_i(T)$, where $e_i(T) = \frac{3+\delta_i(T)}{2}R_iT + e_i^{f,0}$, with $e_i^{f,0}$ is the energy of formation of the *i*th molecule and $\delta_i(T)$ is the number of activated internal degrees of freedom of the molecule that might depend on the temperature, see the previous sections.

For compressible Navier-Stokes equations for an equilibrium chemically reacting mixture, these quantities are not necessary. Instead, it is sufficient to define (with analytic formulas or tables):

- the total pressure $p = \sum_i p_i(\rho, e)$ so that $p = p(\rho, e) = \rho R(\rho, e) T$, with $R(\rho, e) = \sum_i c_i(\rho, e) R_i$;
- the temperature *T*, though the relation $e = \sum_i c_i(\rho, e) e_i(T)$, so that $T = T(\rho, e)$;
- the total specific enthalpy $h = \sum_i c_i h_i$, so that $h = h(\rho, e) = e + \frac{p(\rho, e)}{\rho}$.

Equations

27

$$\partial_t f + \mathbf{v} \cdot \nabla_x f = \frac{1}{\tau} (MGE[f,g] - f), \text{ with: } MGE[f,g] = \sum_{1 \le i \le N} M_i[f,g]$$

$$\partial_t g + \mathbf{v} \cdot \nabla_x g = \frac{1}{\tau} (NMGE[f,g] - g), \text{ with: } NMGE[f,g] = \sum_{N_m + 1 \le i \le N} N_i[f,g]$$
(7)

with the following definitions for reduced Maxwellians:

for
$$1 \le i \le N$$
, $M_i[f, g] = \frac{\rho c_i}{(2\pi R_i T)^{\frac{3}{2}}} \exp\left(-\frac{|v-u|^2}{2R_i T}\right)$,
for $N_m + 1 \le i \le N$, $N_i[f, g] = \left(\frac{\delta_i(T)}{2}R_i T + e_i^{f,0}\right) \frac{\rho c_i}{(2\pi R_i T)^{\frac{3}{2}}} \exp\left(-\frac{|v-u|^2}{2R_i T}\right)$,

Closure

We define $c_i(\rho, e)$ as the mass concentration of i - th molecule, $T := T(\rho, e)$ as the mean temperature depending on internal energy and density which are defined through the following relations:

$$\begin{split} \rho(t,x) &= \int_{\mathbb{R}^3} f \, dv = \int_{\mathbb{R}^3} MGE[f,g] \, dv \\ \rho u(t,x) &= \int_{\mathbb{R}^3} vf \, dv = \int_{\mathbb{R}^3} vMGE[f,g] \, dv, \\ \rho e(t,x) &= \int_{\mathbb{R}^3} (\frac{1}{2}|v-u|^2f+g) \, dv, \\ &= \int_{\mathbb{R}^3} \left(\frac{1}{2}|v-u|^2MGE[f,g] + NMGE[f,g]\right) dv \end{split}$$

Through the "real gas closure" we have:

 $e = \sum_{1 \le i \le N_m + N_d} c_i(\rho, e) \left(\frac{3 + \delta_i(T(\rho, e))}{2} R_i T(\rho, e) + e_i^{f,0}\right)$, where $e_i^{f,0}$ is the energy of formation of the i_{th} molecule and δ_i the number of activated degrees of freedom of this molecule ($\delta_i = 0$ for $i \le N_m$).

NS equations

The moments of f, g, solution of the MGE model (7), satisfy the following Navier-Stokes equations, up to $O(\text{Kn}^2)$:

$$\partial_{t}\rho + \nabla \cdot \rho u = 0,$$

$$\partial_{t}\rho u + \nabla \cdot (\rho u \otimes u) + \nabla p = -\nabla \cdot \sigma,$$

$$\partial_{t}E + \nabla \cdot (E + p)u = -\nabla \cdot q - \nabla \cdot (\sigma u),$$
(8)

where Kn is the Knudsen number (defined below), *E* is the total energy density defined by $E = \left\langle \left\langle \left(\frac{1}{2}|v|^2 + \varepsilon\right)F \right\rangle \right\rangle = \frac{1}{2}\rho|u|^2 + \rho e$.

The MultiGaussian equilibrium model: Chapman En-

NS equations

 σ and ${\it q}$ are the shear stress tensor and heat flux vector defined by

$$\sigma = -\mu \left(\nabla u + (\nabla u)^{T} + (1 - C_{p}) \nabla \cdot u \, ld \right),$$

$$q = -\mu \left(\frac{\sum_{i} c_{i} R_{i} c_{p}^{i} + \sum_{i < j} c_{i} c_{j} \frac{(h_{i} - h_{j})^{2}}{T^{2}}}{\sum_{i} c_{i} R_{i}} \right) \nabla T - \mu \sum_{i < j} \frac{c_{i} c_{j}}{\sum_{i} c_{i} R_{i}} (h_{i} - h_{j}) \nabla \left(\frac{\mu_{i} - \mu_{j}}{T} \right).$$

with $h_i = e_i + R_i T(\rho, e)$ is the enthalpy, $\mu_i := \mu_i(\rho, e)$ is the mass chemical potential of the *i* - *th* specie depending on ρ and *e* (we recall that μ defines the viscosity and not a chemical potential), and $C_p = \frac{\rho}{p} \partial_\rho p + \frac{p}{\rho} \frac{\partial_e p}{p}$

Some remarks

- if N_m + N_d = 1, we recover the classical BGK model for monoatomic or polyatomic model with two distributions so that we capture the correct hydrodynamic limit with a Prandtl number of one.
- We are still unable to prove something close to a second principle for such a model even if it can capture more physics like equilibrium of two inert gases.
- The role of chemical potential in the formula is still under investigation: this term does not appear for classical Navier-Stokes equations for Atmospheric reentry with a "real gas" closure but it appears under various forms in papers for kinetic mixtures models and is linked to Onsager's relations $(\frac{1}{T} \text{ and } -\frac{u_i}{T} \text{ are conjugate variables for } u$ and ρ).

1 Context

- 2 New results for Fokker-Planck models
- 3 Models for vibrations
- 4 New results for BGK models and their extensions

5 Perspectives

Numeric

- Testing the BGK model with a law of real gas
- Pursuing tests on Fokker-Planck Models

Models

- Capturing the different relaxation times for energies,
- Going to non equilibrium chemistry with a "simple model"

[*Bar* + 18] Baranger, C., Marois, G., Mathé, J., Mathiaud, J. and Mieussens, L. "A BGK model for high temperature rarefied gas flows". In: Work in progress (2018).

[*MM*16] J. Mathiaud and L. Mieussens. "A Fokker–Planck Model of the Boltzmann Equation with Correct Prandtl Number". In: Journal of Statistical Physics 162.2 (Jan. 2016), pp. 397–414.

[*MM*17] J. Mathiaud and L. Mieussens. "A Fokker–Planck Model of the Boltzmann Equation with Correct Prandtl Number for Polyatomic Gases". In: Journal of Statistical Physics 168.5 (Sept. 2017), pp. 1031–1055.

[*MM*18] J. Mathiaud and L. Mieussens. "Vibrational models of Boltzmann equation with correct second principle: BGK and Fokker-Planck". In: Work in progress (2018).