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Atmospheric re-entry context

Steady flow

Flow around spacecraft

Hypersonic flows

Sphere-cone configuration

Quantities of interest: heat flux and
aerodynamic coefficients

Looking for steady state solution: relaxation time scale� trajectory time scale
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Physical numbers

Knudsen number

Knudsen number:

Kn = λ
L ( mean free path

characteristic length )

Prandtl number
The Prandtl number characterizes the ratio of the conductivity (λ) and the viscosity (µ)

of a gas of specific heat Cp through: Pr =
µCp

λ
.

In heat transfer problems, the Prandtl number controls the relative thickness of the
momentum and thermal boundary layers.It is equal to 2/3 for monoatomic perfect gases
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Energy modes in molecules

Modes of energy in the air

Translation Rotation Vibration Electronic
Typical temperature 1 3 600 10000

of activation (K)
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Some chemistry in the air
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Zoology of models (1): Boltzmann equation

Boltzmann equation: f (t , x , v)

∂t f + v · ∇x f = Q(f , f ),

Q(f , f )(v) =
∫∫

v∗∈R3,σ∈S2

(
f (v ′∗) f (v ′)− f (v∗) f (v)

)
r2 |v − v∗| dσ dv∗,

v ′ =
v + v∗

2
+
|v − v∗|

2
σ , v ′∗ =

v + v∗
2
− |v − v∗|

2
σ.

Advantages and drawbacks
+ Capture the correct physics: in the Chapman expansion one recovers the Prandtl

number of Navier-Stokes equation which is equal to
2
3

for a monoatomic gas

- High numerical cost in transitional area between 100km and 60km (6D non linear
problem).
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Zoology of models (2): BGK equation and Fokker
Planck equation

BGK equation

∂t f + v · ∇x f =
1
τ
(M(f )− f ) ,

M(f ) =
ρ

(2πRT )3/2 exp

(
|v − u|2

2RT

)
is the Maxwellian of equilibrium satisfying:

< f > =
∫

fdv = ρ,< fv >=
∫

fvdv = ρu,< f
1
2
(v − u)2 >=

∫
f

1
2
(v − u)2dv =

3
2

ρT

τ: characteristic time of collisions.

Fokker Planck equation

∂t f + v · ∇x f =
1
τ
∇v ·

(
(v − u)f + T∇v f

)
,
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Zoology of models (2): BGK equation and Fokker
Planck equation

Advantages and drawbacks
- Physics only approximated: thermal flux underestimated. The Prandtl number is

equal to 1 for BGK model and
3
2

for FP model.

+ Numerical cost less important in transitional area between 100km and 60km.

How to recover the correct Prandtl number?
For BGK models it has been done using the ESBGK model:

∂t f + v · ∇x f =
1
τ
(G(f )− f ) ,

with G(f ) anisotropic Gaussian defined as:

G(f ) =
ρ√

det(2πΠ)
exp

(
− (v − u)Π−1(v − u)

2

)
.

Π being a tensor linked to the different temperatures of thermal agitation.
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Polyatomic model

Equations
We consider a gas described by the particle mass density f (t , x , v , I) that at time t have
the position x , the velocity v and an internal energy parameter I (of internal energy I2/δ:

∂t f + v · ∇x f =
1
τ

(
∇v ·

(
(v − u)f + Π∇v f

)
+ ∂I(δfI +

δ2

2
RTrel I

2− 2
δ ∂I f )

)
︸ ︷︷ ︸

D(f )

,

with: Θ :=
1
ρ
〈(v − u)⊗ (v − u)f 〉 ,

Etr =
3
2

ρRTtr =
〈

1
2 |v − u|2f

〉
,Eint =

δ

2
ρRTint = 〈ε(I)f 〉 ,

T =
3

3 + δ
Ttr +

δ

3 + δ
Tint ,

Π = (1− θ) ((1− ν)RTtr Id + νΘ) + θRTId ,

Trel = (1− θ)Tint + θT .

where the coefficients ν and θ are some free parameters to be fitted.
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Conservation properties

Proposition
We assume ν satisfies a positiveness condition for Π and that ν < 1. The collision
operator D conserves mass, momentum, and energy:〈

(1, v , 1
2 |v |

2 + I2/δ)D(f )
〉
= 0,

It satisfies the dissipation of the entropy:

〈D(f ) log f 〉 ≤ 0,

and the equilibrium property:

D(f ) = 0⇔ f = Gp(f )⇔ f = Mp(f ).

with: Mp(f ) =
ρΛδ

(2π)3/2 (RT )(3+δ)/2
exp

(
− |v − u|2

2RT
− I2/δ

RT

)
,

Gp(f ) =
ρΛδ√

det(2πΠ)(RTrel )δ/2
exp

− 1
2

(
v − u

δI

)T
(

Π 0

0 δ2
2 RTrel I

2− 2
δ

)−1 (
v − u

δI

) .

New results for Fokker-Planck models | J. MATHIAUD | CEA,CESTA / IMB / IPB (Bordeaux) | PAGE 13/44



Hydrodynamic limit

Navier-Stokes limit through Chapmann-Enskog expansion
The moments of f satisfy, up to O(Kn2), the Navier-Stokes equations:

∂t ρ +∇ · ρu = 0,

∂t ρu +∇ · (ρu ⊗ u) +∇p = −∇ · σ,
∂t E +∇ · (E + p)u = −∇ · q −∇ · (σu),

where the shear stress tensor and the heat flux are given by

σ = −µ
(
∇u + (∇u)T − α∇ · u

)
, and q = −κ∇ · T ,

with the following values of the viscosity and heat transfer coefficients (in dimensional
variables).

µ =
τp

2(1− (1− θ)ν)
, α = (γ− 1)− (1− ν)(1− θ)

θ

(
5
3
− γ

)
and κ =

5 + δ

6
τpR,

and γ = δ+5
δ+3 . Moreover, the corresponding Prandtl number is

Pr = 3/(2(1− (1− θ)ν)).
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Numerical 0-D scheme

Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process reads:

dVi (t) = −dt
τ

(Vi (t)− u) + Av dBv (t),

dε i (t) = −2dt
τ

(
ε i (t)−

δ

2
RTrel

)
+ 2

√
RTrel ε i (t) dBε(t),

V n+1
i =

(
1− ∆t

τ

)
(V n

i − u) +

√
2∆t

τ
A

 B1
B2
B3



εn+1
i =

(√εn
i +

√
dt
τ

RTrelBε

)2

+ (δ− 1)RTrel
dt
τ

 /
(

1 +
2dt
τ

)
,
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Numerical results: 0D and 2D

Figure: Convergence of the directional
translational temperatures and the internal
temperature to their equilibrium value.

Figure: Comparison at Mach 2, Kn=0.05
between DSMC and FP in collaboration
with H. Gorji (RWTH Aachen, Germany)
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Simple vibratory models

Definition
Let f (t , x , v , ε, i) be the mass density distribution of particles with position x , velocity v ,
internal energy ε, and in the i-th vibrational energy level, such that its vibrational energy
is iRT0 (T0: characteristic vibrational temperature of the molecule). The corresponding
local equilibrium distribution is defined by:

Mvib [f ](v , ε, i) =
ρ

√
2πRT

3
1− e−T0/T

RT
exp

(
−

1
2 |u − v |2 + ε + iRT0

RT

)

ρ = 〈f 〉v ,ε,i , ρu = 〈vf 〉v ,ε,i , ρe =

〈(
1
2
|v − u|2 + ε + iRT0

)
f
〉

v ,ε,i
,

where we use the notation 〈φ〉v ,ε,i = ∑∞
i=0
∫∫

φ(t , x , v , ε, i) dvdε for any function φ.

The temperature T can be recovered by inverting the relation e =
(

5
2 + T0/T

eT0/T−1

)
RT so

that there exists T−1 such that T = T−1(e).

The entropy H(f ) of f is naturally defined through H(f ) = 〈f log f 〉v ,ε,i .
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Some properties and notations

Properties of the equilibrium

〈Mvib [f ]〉v ,ε,i = ρ, 〈vMvib [f ]〉v ,ε,i = ρu,
〈
(
1
2
(v − u)2 + ε + iRT0)Mvib [f ]

〉
v ,ε,i

= ρe.

Energies at equilibrium
At equilibrium, we define the following energies of translation, rotation, and vibration:

etr (T ) =

〈
(
1
2
(v − u)2)Mvib [f ]

〉
v ,ε,i

=
3
2

ρRT , (1)

erot(T ) = 〈εMvib [f ]〉v ,ε,i = ρRT , (2)

evib(T ) = 〈(iRT0)Mvib [f ]〉v ,ε,i = ρ
RT0

eT0/T − 1
= ρ

δ(T )

2
RT , (3)

with δ(T ) = 2 T0/T
eT 0/T−1 .
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Reduced models for vibrations: construction

Reduced distributions
For computational efficiency, it is interesting to define marginal, or reduced, distributions
F and G by :

F (t , x , v , ε) = ∑
i

f (t , x , v , ε, i),

G(t , x , v , ε) = ∑
i

iRT0f (t , x , v , ε, i).

The macroscopic variables defined by f can be obtained through F and G only

ρ = 〈F 〉v ,ε , ρu = 〈vF 〉v ,ε , ρe =

〈
(
1
2
(v − u)2 + ε)F

〉
v ,ε

+ 〈G〉v ,ε .

where we use the notation 〈ψ〉v ,ε =
∫∫

ψ(t , x , v , ε) dvdε for any function ψ.
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Reduced models: entropy

Entropy
The reduced entropy H(F ,G) of the system is:

H(F ,G) =

〈
F log(F ) + F log

(
RT0F

RT0F + G

)
+

G
RT0

log

(
G

RT0F + G

)〉
v ,ε

.

Proof (1)
The set {f > 0 such that ∑i fi = F , ∑i iRT0fi = G} is clearly convex, so that we can
use a Lagrangian multiplier approach by finding a saddle point of the function I defined
through :

I(f , α, β) = ∑
i

fi log fi − α

(
∑
i

fi − F

)
− β

(
∑
i

iRT0fi −G

)
,

where α and β are real numbers.
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Reduced models: entropy

Proof (2)

The saddle point satisfies
∂I
∂f

= 0, and one deduces that f can be written

fi (v , ε) = A(v , ε) exp (−iB(v , ε)T0). The linear constraints give:

F = ∑
i

fi =
A

1− exp (−BT0)
, G = ∑

i
fi iRT0 =

ART0 exp (−BT0)

(1− exp (−BT0))
2 .

Solving this linear system gives:

H(F ,G) = F log(F ) + F log

(
RT0F

RT0F + G

)
+

G
RT0

log

(
G

RT0F + G

)
,

using that G/F = evib(1/B).

A final integration with respect to v and ε gives the final result:

H(F ,G) = 〈H(F ,G)〉v ,ε
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Reduced models: H-theorem

Proposition
We have the following properties

the function (F ,G) 7→ H(F ,G) is convex.

the minimum of H(F1,G1) on S is obtained on (Mvib(F ,G),Nvib(F ,G)) with:

Mvib(F ,G) =
ρ

√
2πRT

3 exp

(
− ρ|u − v |2

2RT

)
1

RT
exp

(
− ε

RT

)
,

Nvib(F ,G) = evib(T )Mvib(F ,G)),

where evib(T ) is the equilibrium vibrational energy.
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Mathematical properties of the entropy

Properties
We note H(F ,G) be the positive-definite Hessian matrix of H.

H(F ,G) =

(
2
F −

RT0
RT0F+G −

1
RT0F+G

− 1
RT0F+G

F
G(RT0F+G)

)
(4)

It satisfies: 1 = FH11(F ,G) + GH21(F ,G) , 0 = FH12(F ,G) + GH22(F ,G).

Using D1(H)(F ,G) = 1 + log
(

RT0F 2

RT0F+G

)
,D2(H)(F ,G) = 1

RT0
log
(

G
RT0F+G

)
, we

have:

H(Mvib(F ,G),Nvib(F ,G))−H(F ,G)

≥ D1(H)(F ,G)(Mvib(F ,G)− F ) + D2(H)(F ,G)(Nvib(F ,G)−G) (5)

Consequences
Equations (4) and (5) respectively give the second principle for the Fokker-Planck model
and the BGK model we are going to construct.
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Vibrationnal BGK model with correct second principle

Model

∂t F + v · ∇x F =
1
τ
(Mvib [F ,G]− F ) ,

∂t G + v · ∇x G =
1
τ
(Nvib [F ,G]−G) .

with:
F = ∑

i
f (t , x , v , ε, i),G = ∑

i
iRT0f (t , x , v , ε, i),

Mvib [F ,G] =
ρ

√
2πRT

3 exp

(
− ρ|u − v |2

2p

)
1

RT
exp

(
− ε

RT

)
,

ρ = 〈F 〉v ,ε , ρu = 〈Fv〉v ,ε , ρe =

〈
F
(

1
2
(v − u)2 + ε

)〉
v ,ε

+ 〈G〉v ,ε ,

T = T−1(e).
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Hydrodynamic limit for BGK model

Hydrodynamic limit
Let (F ,G) be solutions of BGK equations up to O(Kn2). Then the moments of (F ,G)
satisfy the following Navier-Stokes equations up to O(Kn2):

∂t ρ + divx(ρu) = 0

∂t (ρu) + divx(ρu ⊗ u) +∇x p = −divx(σ) + O(Kn2)

∂t E + divx((E + p)u) = −divx(q)− divx(σu) + O(Kn2) ,

with: E =

〈(1
2
|v |2 + ε

)
F + G

〉
v ,ε

= ρe +
1
2

ρ|u|2 ,

σ = −µ
(
∇x u +∇x uT − Cdivx(u)Id

)
,

q = −µ∇x h ,

where h = e + RT , C = ∂e(RT ) = R
Cv (T )

, Cv (T ) = 5
2 R + (T0/T )2eT0/T

(eT0/T−1)2 R.

By defining Cp = Cv + R the specific heat at constant pressure, one gets:

q = −µCp∇x T ,

so that as usual only a gas with a Prandtl number of one is obtained.
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Vibrationnal Fokker-Planck model with correct second
principle

Model

∂t F + v · ∇x F = DF (F ,G),

∂t G + v · ∇x G = DG(F ,G).

with:
F = ∑

i
f (t , x , v , ε, i),G = ∑

i
iRT0f (t , x , v , ε, i),

DF (F ,G) =
1
τ

(
∇v ·

(
(v − u)F + T∇v F

)
+ 2∇ε(F ε + RT ε∇εF )

)
,

DG(F ,G) =
1
τ

(
∇v ·

(
(v − u)G + T∇v G

)
+ 2∇ε(Gε + RT ε∇εGf )

)
+

2
τ
(evib(T )F −G) ,

ρ = 〈F 〉v ,ε , ρu = 〈Fv〉v ,ε , ρe =

〈
F
(

1
2
(v − u)2 + ε

)〉
v ,ε

+ 〈G〉v ,ε ,

T = T−1(e).
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Hydrodynamic limit for Fokker-Planck model

Hydrodynamic limit
Let (F ,G) be solutions of BGK equations up to O(Kn2). Then the moments of (F ,G)
satisfy the following Navier-Stokes equations up to O(Kn2):

∂t ρ + divx(ρu) = 0

∂t (ρu) + divx(ρu ⊗ u) +∇x p = −divx(σ) + O(Kn2)

∂t E + divx((E + p)u) = −divx(q)− divx(σu) + O(Kn2) ,

with: E =

〈(1
2
|v |2 + ε

)
F + G

〉
v ,ε

= ρe +
1
2

ρ|u|2 ,

σ = −µ
(
∇x u +∇x uT − Cdivx(u)Id

)
,q = −2

3
µ∇x h ,

where h = e + RT , C = ∂e(RT ) = R
Cv (T )

, Cv (T ) = 5
2 R + (T0/T )2eT0/T

(eT0/T−1)2 R.

By defining Cp = Cv + R the specific heat at constant pressure, one gets:

q = −2
3

µCp∇x T ,

so that as usual only a gas with a Prandtl number of 3/2 is obtained.
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Perspectives

Recovering Prandtl number: the easy part
As usual there is a need for a Gaussian equilibrium to correct the characteristics times
of relaxation . So we will need to go to an ESBGK or an ESFP model...

Recovering Prandtl number: the tricky part
Since relaxation times for rotation and vibration are not of the same order there is a
need for a model with more equations (3 probably) to capture correctly the relaxation
phenomena: the Prandtl number cannot be the only criterion to correct the model.
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Model

Equations

∂t f + v · ∇f =
M [f ]− f

τ
, (6)

where the Maxwellian equilibrium is M [f ] = M [ρ,u,e] defined by

M [f ](v , ε) =
ρ√

2π p
ρ

3 exp

(
− ρ|u − v |2

2p

)
Λ(δ)

(
ρε

p

) δ
2−1 ρ

p
exp

(
− ρε

p(ρ,e)

)
.

The macroscopic quantities are given by

ρ = 〈〈f 〉〉 ,

u =
1
ρ
〈〈fv〉〉 ,

e =
1
ρ

〈〈(
|v − u|2

2
+ ε

)
f

〉〉
,

with 〈〈·〉〉 =
∫∫

R3×R+ · dvdε, and the closure relation on the pressure p = p(ρ,e).
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Chapman-Enskog expansion

Prandtl and Schmidt numbers
Let f be the solution of BGK equation up to O(Kn2).I Its moments satisfy the following
Navier-Stokes equations up to O(Kn2):

∂t ρ + divx(ρu) = 0

∂t (ρu) + divx(ρu ⊗ u) +∇x p = −divx(σ) + O(Kn2)

∂t E + divx((E + p)u) = −divx(q)− divx(σu) + O(Kn2) ,

with: E = ρe +
1
2

ρ|u|2 , σ = −µ
(
∇x u +∇x uT − Cdivx(u)Id

)
, q = −µ∇x h .

h = e + p/ρ , C = ρ

p

(
∂1p +

p
ρ2 ∂2p− p

ρ

)
.

For reacting perfect gases at equilibrium h(ρ,T ) = ∑i ci (ρ,T )hi (T ) with ci mass
concentration of the i − th gas and hi its enthalpy. We get that:

µ∇h = µ

(
(∑

i
cicpi )∇T + ∑

i
hi (T )∇ci

)
.

The Prandtl number is equal to one. We also note that Di the multicomponent diffusion
coefficient of the ith component is µ

ρ so that the Schmidt number µ
ρDi

is equal to one .

New results for BGK models and their extensions | J. MATHIAUD | CEA,CESTA / IMB / IPB (Bordeaux) | PAGE 32/44



Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Figure: Velocity field and Temperature field (Top:Navier-Stokes solver NS2, bottom: new
model BGK2)
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Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Figure: Velocity field and Temperature field (Top: new model BGK2, bottom: old model
BGK1)
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Results on a mixture of two non-reacting gases

Mach 10, Knudsen 0.1

Figure: Temperature along the axis
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The MultiGaussian equilibrium model: notations

Notations
For every species of the mixture, numbered with index i :

its concentration ci depends on ρ and e only: ci = ci (ρ,e) ;

its pressure pi satisfies the usual perfect gas law: pi = ρiRiT , where Ri is the gas
constant of the species and ρi = ci (ρ,e)ρ, so that pi = pi (ρ,e) ;

its specific energy ei and enthalpy hi depend on T only: ei = ei (T ) and
hi = hi (T ), where ei (T ) = 3+δi (T )

2 RiT + ef ,0
i , with ef ,0

i is the energy of formation of
the i th molecule and δi (T ) is the number of activated internal degrees of freedom
of the molecule that might depend on the temperature, see the previous sections.

For compressible Navier-Stokes equations for an equilibrium chemically reacting
mixture, these quantities are not necessary. Instead, it is sufficient to define (with
analytic formulas or tables):

the total pressure p = ∑i pi (ρ,e) so that p = p(ρ,e) = ρR(ρ,e)T , with
R(ρ,e) = ∑i ci (ρ,e)Ri ;

the temperature T , though the relation e = ∑i ci (ρ,e)ei (T ), so that T = T (ρ,e) ;

the total specific enthalpy h = ∑i cihi , so that h = h(ρ,e) = e +
p(ρ,e)

ρ .
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The MultiGaussian equilibrium model: model

Equations

∂t f + v · ∇x f =
1
τ
(MGE [f ,g]− f ),with: MGE [f ,g] = ∑

1≤i≤N
Mi [f ,g]

∂t g + v · ∇x g =
1
τ
(NMGE [f ,g]− g),with: NMGE [f ,g] = ∑

Nm+1≤i≤N
Ni [f ,g]

(7)

with the following definitions for reduced Maxwellians:

for 1 ≤ i ≤ N,Mi [f ,g] =
ρci

(2πRiT )
3
2
exp

(
−|v − u|2

2RiT

)
,

for Nm + 1 ≤ i ≤ N,Ni [f ,g] =
(

δi (T )

2
RiT + ef ,0

i

)
ρci

(2πRiT )
3
2
exp

(
−|v − u|2

2RiT

)
,
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The MultiGaussian equilibrium model: closure relations

Closure
We define ci (ρ,e) as the mass concentration of i − th molecule, T := T (ρ,e) as the
mean temperature depending on internal energy and density which are defined through
the following relations:

ρ(t , x) =
∫

R3
f dv =

∫
R3

MGE [f ,g] dv

ρu(t , x) =
∫

R3
vf dv =

∫
R3

vMGE [f ,g] dv ,

ρe(t , x) =
∫

R3
(
1
2
|v − u|2f + g) dv ,

=
∫

R3

(
1
2
|v − u|2MGE [f ,g] + NMGE [f ,g]

)
dv

Through the ”real gas closure” we have:
e = ∑1≤i≤Nm+Nd

ci (ρ,e)
(

3+δi (T (ρ,e))
2 RiT (ρ,e) + ef ,0

i

)
, where ef ,0

i is the energy of
formation of the ith molecule and δi the number of activated degrees of freedom of this
molecule (δi = 0 for i ≤ Nm).
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The MultiGaussian equilibrium model: Chapman En-
skog

NS equations
The moments of f ,g, solution of the MGE model (7), satisfy the following Navier-Stokes
equations, up to O(Kn2):

∂t ρ +∇ · ρu = 0,

∂t ρu +∇ · (ρu ⊗ u) +∇p = −∇ · σ,
∂t E +∇ · (E + p)u = −∇ · q −∇ · (σu),

(8)

where Kn is the Knudsen number (defined below), E is the total energy density defined
by E =

〈〈
( 1

2 |v |
2 + ε)F

〉〉
= 1

2 ρ|u|2 + ρe.
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The MultiGaussian equilibrium model: Chapman En-
skog

NS equations
σ and q are the shear stress tensor and heat flux vector defined by

σ = −µ
(
∇u + (∇u)T + (1− Cp)∇ · u Id

)
,

q = −µ

∑i ciRicp
i + ∑i<j cicj

(hi−hj )
2

T 2

∑i ciRi

∇T − µ ∑
i<j

cicj

∑i ciRi
(hi − hj )∇

(
µi − µj

T

)
.

with hi = ei + RiT (ρ,e) is the enthalpy, µi := µi (ρ,e) is the mass chemical potential of
the i − th specie depending on ρ and e (we recall that µ defines the viscosity and not a
chemical potential), and Cp =

ρ
p ∂ρp + p

ρ
∂ep
p
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The MultiGaussian equilibrium model

Some remarks
if Nm + Nd = 1, we recover the classical BGK model for monoatomic or polyatomic
model with two distributions so that we capture the correct hydrodynamic limit with
a Prandtl number of one.

We are still unable to prove something close to a second principle for such a model
even if it can capture more physics like equilibrium of two inert gases.

The role of chemical potential in the formula is still under investigation: this term
does not appear for classical Navier-Stokes equations for Atmospheric reentry with
a ”real gas” closure but it appears under various forms in papers for kinetic
mixtures models and is linked to Onsager’s relations ( 1

T and − ui
T are conjugate

variables for u and ρ).
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Perspectives

Numeric
Testing the BGK model with a law of real gas

Pursuing tests on Fokker-Planck Models

Models
Capturing the different relaxation times for energies,

Going to non equilibrium chemistry with a ”simple model”
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